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Section 1

Introduction




The model of linear radiation transport describe many important
phenomenon.

The linear Boltzmann equation very accurately describes the behavior of a
variety of transport processes

>

>

>

Neutrons in a nuclear reactor,
Radiation in oil well monitoring, medical imaging, and therapies

X-rays in high energy density situations: inertial confinement fusion,
astrophysical radiating shocks

Atmospheric radiative transfer
Neutrinos in core-collapse supernovae

Electron/ion/photon transport in radiotherapy, space weather, electronics




Nuclear Fission

Fission Chain Reaction
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Inertial Confinement Fusion

Indirect-drive Fuel capsule Fusion Fusion
illumination compression ignition burn
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Core-Collapse Supernova
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Radiation Therapy
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Atmospheric Radiative Transfer
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Section 2

Numerical Methods for the Linear Boltzmann Equation




The Linear Boltzmann Equation describes the transport of particles that
travel in straight lines between collisions.

» We are interested in the phase-space density of particles, N, that travel in
straight-lines between collisions. The equation that describes this is the
linear-Boltzmann equation:

(0e + v -V 4+ vou(x, t)) N(x,Q, v, t) =

/ dQ// dv' vios(x, 1, = Qv = VIN(x,Q, v, t) + Q(x,Q, v, t)
Sa 0

> Q €S, is the direction of the particle’s flight (angular variable), v is the
particle speed.

» The interaction probabilities (cross-sections) are the total cross-section o
which is the average number of collisions a particle undergoes with the
material medium per unit distance travelled, and

» The double-differential scattering cross-section, os(x,t,Q — Q,v/ — v)

is the mean number of particles that scatter to direction Q and speed v
per particle traveling in the differential phase space element.




Simplifications

» For notational simplicity we will make the assumption that the
discretization in speed (energy) is a solved problem, and we only need to
consider a single speed equation.

» Additionally, we will assume that the scattering is isotropic.

» Both of these are simplifications for real systems. These will contribute to
uncertainties later.
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Simplified Equations

» After these simplifications we can write the resulting equation as

os(x, t)
4

(V0 + Q- YV oulx 1) (x, 2, 1) = (x, 1) + Q(x, 2, 1),

where ¢ = v and
oxt) = [ d20(x2.0) = (0).
Sa

» We will also assume that v = 1. This is the same as scaling the time
variable.

» Initial condition: (x,,0) = F(x,Q), and boundary conditions are inflow
conditions:

PY(x,Q,t) =T(x,Q,t) forxedV, A-Q<O0.
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Numerical Challenges

» Phase space complexity
> Need for thousands of unknowns per spatial degree of freedom
» Multiscale phenomenon

> In problems where the scattering is large, the transport equation
asymptotically limits to a diffusion equation for the particles

> Need numerical methods that preserve this fact when the mesh does not
resolve the collision length scales.

» Coupling to other physics (fluid flow, etc.)




Discrete Ordinates (S,) method

» The discrete ordinates method is a collocation method in angle that solves
the transport equation along a particular directions (£2;) and uses a
quadrature rule, {wj, Q;} to estimate the collision terms. (Chandrasekhar)

> Leads to a simple, triangular system of discrete equations for each
direction when the backward Euler method is used in time and a simple
iteration strategy is used

(Q SV + t) €+1( tn+1 _ Uq(X t) Z /wj n+1) Qj*y

of =0+ At and QF = Q +¥(x,t").
» This iteration procedure is called a transport sweep.

» As a result when, os/o¢ is small this iteration convergences quickly,
otherwise need to include the solution of a diffusion equation in the
iteration.

» This is the best understood method for deterministic particle transport.




Transport Sweeps and Parallel Computing
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Transport Sweeps and Parallel Computing
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Monte Carlo

» Rather than discretize phase space directly we sample particles and advect
them based on stochastic collision processes.

» Can be very accurate and operate on general domains in space and energy.
» Slow convergence N~/2 typically limits applicability.

» For steady-state problems it is considered the gold standard, if you can
afford the simulation.




Spherical Harmonic Functions

» Decompose the angle Q into components

Q = (1,2, 2)" = (sind cos(y),sind sin(e), cos )"
» The normalized, complex spherical harmonic of degree ¢ and order k are

— k)
2041 (0= k) e"? Py (cos V) ,

I = [T 0+ k)

where PJ is an associated Legendre function.

» For convenience, we use normalized, real-valued spherical harmonics méf
and for each degree ¢. For given N > 0, set

I T | -1 NT T T T\T
me=(m, ,m, " ,...,,m, ,my) and m=(mg,m;,...,my)

» The components of m form an orthonormal basis for the polynomial space

N L
PNz{ZZc;mzzc;eRforogng,|kgz}. (1)

£=0 k=—¢




Spherical Harmonics (Py ) Equations

» Spectral approximation in Q

~ = T
N
’l/)w’l/]p =m up,

where up,, = up, (t, x) solves the Py equations

Owup, + A-Vyup, +0aup, +0sGup, =s, (t,x)€ (0,00) x R?
upy (0,x) = (myo(x;,)), x € R?
with
> s:=(mS)
> A- V= Z?:l A0y and each A; = (Q;mm7) is symmetric

> G > 0 is diagonal

> Angle brackets denote integration over §%: (-) := [,(-)dQ




Properties of the Py Equations

» Good Stuff

> Fast convergence for smooth solutions
> Preserve rotational invariance of the transport operator

> Harmonics are eigenfunctions of the scattering operator

» Bad Stuff

» Gibbs phenomena near wave fronts
> Negative values for the concentration (¢) in multi-D
> May be ill-posed in steady-state (A; can have zero eigenvalues)

> Challenging boundary conditions




The Line Source Problem: All Methods have issues

(a) analytic (b) Monte-Carlo

(d) P1 (e) Ps

1T. A. Brunner. “Forms of Approximate Radiation Transport”, Tech. Rep. SAND2002-1778
Sandia National Laboratories, Jul 2002. [m] = =




The issue is the closure

v

The standard Py closure simply truncates the expansion for / > N.

v

The Gibbs oscillations are a result.

» The negative densities are problematic for coupled simulations: what does
a negative absorption rate density mean?

v

Other methods have been proposed to alleviate this issue
» The My methods use the ansatz
P epTc

to close the system.
> Solve an optimization problem to assure that the ansatz is positive.

v

Idea: Apply filters to the expansion to damp oscillations.
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Test problem: Crooked Pipe

1.0 2.0 3.0 4.0 5.0 6.0
x (cm)

» This is a standard high energy density radiative transfer test problem.

> Blue region is optically thin (little interaction between radiation and
material)

> Red regions are optically thick (strong collisions between radiation and
material)

» Radiation source at left entrance.




Unfiltered calculation

Material temperature (in keV) at
t = 3.5 ns (from top to bottom)
left: P1, P3, Ps

right: P7, P39

The white regions show where the radiation density is negative.




Locally filtered calculation
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Section 3

Uncertainty Quantification




The Parametric Uncertainty Quantification Problem

v

Consider an output quantity from a transport calculation of the form

y:/dV w(x, Q, E, t)Y(x,Q, E, t).

Such a quantity could be the total fission energy produced in the system
or the number of neutrons leaking out of the reactor.

We are interested in the estimation of y as a function of the input
parameters: o:(E), os(E).

Because these inputs are functions that depend on energy and the
particular material, there can easily be hundreds/thousands of input
uncertainties

Other possibilities are the shape of objects in the system, densities, etc.

In may be the case that we are primarily interested in first-order or
second-order sensitivities to each of the parameters, p;:

/ ay / / 82)/
Y=Y+ i =—pi + Qijit ~—— PiPj’ -
? ; opi Z Z OpiOp;

i=1 i’=1




Efficient Estimation via regularization

» One could estimate these sensitivities via finite differences or via an
adjoint approach. Both have downsides.

» We could interpret the equation above as a regression model and run the
code with various values of p; and estimate the coefficients.

» A greenhorn statistics student will tell you that estimating the coefficients
in the regression model

Yy =Po+ Bixi+ Baxa+ -+ Bpxp + €,
is impossible if the number of observations m is less than the number of

parameters N, and not likely to be accurate until m > N.

» This a common problem in many data mining analyses, e.g. my grocery
store has 1000s of potential variables that could explain what item | will
buy.

» Therefore, unless we want to run a very large number of simulations, the
m above, we cannot estimate all the j's.




Efficient Estimation via regularization

» There are approaches that help this issue, but don't exactly fix the
problem.

> Variable selection based on judgment is a key example,
> Adjoint-based approaches can also help, but are tricky in non-linear,
time-dependent, or multi-physics situations. These also are best for single
quantity of interest (Qol) situations.
> It turns out we can get robust estimates of sensitivities when the number
of simulations is smaller than the number of parameters we want to
estimate.

» The reason that this could work is that in most problems many of the
sensitivities are effectively zero, i.e. 8i ~ 0

» What we need is a technique that determines which of these is zero, based
on the data and not based on an assumption.

> The issue is that this is clearly an ill-posed problem and we need to
constrain the space in which we look for a solution. This is done through
regularization of the problem.




The magic of the L1 norm

» We will cast the problem in terms of an optimization problem. For the
regression formulation one possibility is the problem

Find the B that minimizes ||e|> + /\Z |Bil-

i

» This approach is a regularized regression problem called lasso regression
because in practice it sets some [3;'s to zero and “lassos” the important
variables.

> Like ordinary least squares regression it attempts to minimize the sum of
the squares of the error, but it also tries to minimize the magnitude of the
coefficients (the L1 norm of the vector ).

» The L1 norm is the reason that certain (;'s are set to zero.




The magic of the L1 norm

» While there is rich literature on why these regularized optimization
problems work well in the L1 norm (see for instance the work of Candes
and Tao), here is a yeoman'’s justification of why this might be so.

» Consider the problem of estimating the coefficients in the problem
y=a+ bx+e,

by minimizing

S &+ (laf” + [bP) 7.

» The curve of equal value of (|a|” + |b|P)"/ is a circle for p =2 and a
diamond for p = 1.

» The curves of equal value for ||¢||* are ellipses.

» One can show that where the diamond intersects the ellipse of minimum
size will be closer to one of the axes.




The magic of the L1 norm

[1x[ly 11>

from https://tianyizhou.wordpress.com/2010/08/23/compressed-sensing-review- 1-reconstruction-algorithms/
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Previous UQ Work

» In the nuclear field, Watanabe et al. used L1 minimization to estimate
first-order sensitivity coefficients for a pincell burnup problem with 5000
parameters. They needed 500 simulations to estimate the parameters
efficiently. These results did not leverage a regression framework, which
could lead to improvement.

» For climate uncertainty analysis, LLNL researchers have used lasso-type
approaches to estimate polynomial chaos expansion coefficients.

> In this presentation I'll present the results of a bake-off to compare
different approaches to estimate second-order sensitivity coefficients, i.e.,
the quadratic and interaction terms neglected in a first-order sensitivity

analysis.




Non-Bayesian Regularization Regression Approaches

In these methods we explicitly change the minimization problem.

> Lasso regression (OLS plus an ¢; penalty based on size of 3's):

ﬂ=arg[;nin{llY—X5\|§+/\1H[3H1} (2)

> Ridge regression (OLS plus an ¢, penalty based on size of 8’s):

B = argmin{|[¥ =~ X5]z + X [15]12} (3)
» Elastic net regression (Combination of Lasso and Ridge):
g = argmin {|I¥ = X[ +aXillgl + (1 - )8} ()

» Dantzig selector (Minimize ¢ error in fit with ¢; penalty on 3's):

ﬁ:arg;in{llﬂT(YfXﬁ)Hoo + M8} (5)
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Section 4

Model description




Problem settings

Lattice of TRIGA fuels pin modeled with MCNP
> Q0|Z keft

Fuel meat

Clad

Water

Zr rod

Graphite
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Problem descriptions

There are 299 sensitivity coefficients taken into account in this problem:
» 23 input parameters:

> 6 geometric parameters: e.g. r-fuel (fuel radius)
> 17 material parameters: e.g. p—Zr (Zr rod mass density)

» 253 pairwise interactions (23 choose 2)
» 23 quadratic terms

The aim is to investigate the sensitivity of the criticality to the parameters,
especially the second order terms. The model is:

7N§:Q (5x,> R (ax_,) (6&) e <5XX> (6)

i=1 j=i+1 Xi i=1 !

where ¢;, ¢j and ¢, i =1,---,23,j # i, are the first order, interactive and
quadratic sensitivity coefficients, respectively.




Reference data

» We are going to compare reference sensitivity coefficients to the
coefficients computed by various regularized regression techniques using
many few code runs (cases).

» The reference coefficients are computed using 1058 cases.

> We need 46 total simulations for the linear and quadratic parameters
> 1012 simulations are needed for the 253 interactions (4 simulations for each)

» The goal of this research is to see if regularized regression techniques can
give coefficient estimates close to the references using many fewer
simulation runs than the 1058 cases.




Coefficient Estimation: Interactions (299 samples)

Blue dots are regression estimations, red lines are reference
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Coefficient Estimation: Quadratic (299 samples)
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Conclusions

Particle transport problems are important in many fields.

v

The efficient solution of these problems is important due to the rich phase
space.

v

» Uncertainty quantification is challenging because one needs many
simulations for a given system.

» Much more work to do.
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