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Section 1

Introduction



The model of linear radiation transport describe many important
phenomenon.

The linear Boltzmann equation very accurately describes the behavior of a
variety of transport processes

I Neutrons in a nuclear reactor,

I Radiation in oil well monitoring, medical imaging, and therapies

I X-rays in high energy density situations: inertial confinement fusion,
astrophysical radiating shocks

I Atmospheric radiative transfer

I Neutrinos in core-collapse supernovae

I Electron/ion/photon transport in radiotherapy, space weather, electronics



Nuclear Fission
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Nuclear Plant
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Nuclear Plant



Oil Well Logging

• Estimated shale volume. 

• Gas bearing zones.   
Measurement while drilling can be performed by using specialist 
subassembly units fitted to the drill string. These will provide real 
time information that can be used to assist both drilling operations 
and reservoir evaluation. Density information is gained from 
detecting gamma radiation, backscattered from formation rocks 
and fluid contents (Figure 1). A sealed radioactive source in the 
tool is emitting gamma radiation to the formation before they are 
backscattered to the detectors. The radiation passes through the 
formation and interacts with the medium it comes into contact 
with. By being aware of typical densities and the backscatter of 
radiation, the information can be characterized for the particular 
formation being evaluated. A formation density log is cross 
plotted against a neutron log for lithology determination and 
better porosity estimation IAEA (2005a). 

   
Figure 1: Schematic diagram for the well logging tools   
                 including the radioactive sources (Abu-Jarad, 2007) 

2.2 Applications in producing 
 
a- Multiphase flow meters (MPFMs) 
The radiation-based multiphase flow meter (MPFM) is relatively 
new technology to Oil industry. MPFMs are used to measure the 
phase fraction of oil, gas and water in the flow from an oil well. 
The conventional methods used to measure the phase fraction in 
the flow for each well at wide intervals that could span over 
several months. The radiation-based MPFMs provide such 
information instantly, easing monitoring problems and enabling 
quick access to data, which allows rapid decisions to be made on 
well performance. The wealth of data accumulated by radiation-
based MPFM can be fed into reservoir simulation codes to 
enhance their accuracy and reliability. These instruments are 
installed in remote platforms and working places and moreover, 
the radiation dose-rate at one meter from any of these instruments 
is minimal, Scheers (1998).  
The operation principle of radiation-based MPFMs is a gamma 
source (either 133Ba, 241Am or 137Cs) placed on one side of a pipe 
and a detector on the other. The gamma source is continually 
emitting radiation and the detector is continually detecting 
radiation (Figures 2). The liquid which is flowing through the 
pipe will attenuate the radiation therefore restricting what is 
picked up by the detector, and by knowing the densities of 
different liquids/gases information can be obtained on the 
contents of the material flowing through the pipe. MPFMs are 

used to measure the surface flow rate and the phase fraction of oil, 
gas and water in the flow from an oil well providing instant 
information about the condition of the production and allowing 
rapid decision making on well performance. This technique is 
considered superior to the conventional techniques involving well 
testing at much longer intervals of days and up to months. Oil 
industry is making widespread use of MPFM and will be 
increasing the use of this technology Scheers (1998). 

Oil, Gas & Water 

Detector Radioactive Source 

Computer 

 
Figure 2: Schematic diagram for the radiation-based 
                multiphase flow meter (Abu-Jarad, 2007) 

 
b- Radioactive Tracers 
Radioactive tracers are radioactive liquids which are injected by 
specialized equipment into selected oil and gas field wells for 
special reservoir and production evaluation studies by specialist 
contractors. In this type of operation, small amounts of 
radioactive materials (like Gold-198 (198Au), Iodine-131 131I) 
Antimony-124 (124Sb)) with relatively short half-lives (few days) 
are injected into the wells to trace the fluid flow in the formation 
rocks or behind the casing and tubing of the well. After the 
radioactive material is injected, a spectral gamma ray logging tool 
is run in the well to detect the fluid movement and the anomalies. 
The logging information is used to evaluate the formation 
fractures and reservoir permeability. In some production studies, 
the logging data is used to determine leaks and behind pipe flow 
of the casing and tubing of the well. 

2.3 Application in inspection of facilities 
Radiation technologies are based on utilizing some of radiation’s 
physical properties to yield a useful result. The high ability of 
gamma and x-rays to penetrate matter is applied in the inspection 
of structures for weakness and flaws in industrial radiography. 
Generally in the inspection of facilities radiation sources are used 
for applications such as: 
 

• Industrial Radiography 
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Core-Collapse Supernova
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Radiation Therapy

precisionradiotherapy.com/images/PE_Prostateplan.jpg

precisionradiotherapy.com/images/PE_Prostateplan.jpg


Atmospheric Radiative Transfer
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Section 2

Numerical Methods for the Linear Boltzmann Equation



The Linear Boltzmann Equation describes the transport of particles that
travel in straight lines between collisions.

I We are interested in the phase-space density of particles, N, that travel in
straight-lines between collisions. The equation that describes this is the
linear-Boltzmann equation:

(∂t + vΩ · ∇+ vσt(x , t))N(x ,Ω, v , t) =∫
S2

dΩ′
∫ ∞

0

dv ′ v ′σs(x , t,Ω
′ → Ω, v ′ → v)N(x ,Ω, v , t) + Q(x ,Ω, v , t)

I Ω ∈ S2 is the direction of the particle’s flight (angular variable), v is the
particle speed.

I The interaction probabilities (cross-sections) are the total cross-section σt

which is the average number of collisions a particle undergoes with the
material medium per unit distance travelled, and

I The double-differential scattering cross-section, σs(x , t,Ω
′ → Ω, v ′ → v)

is the mean number of particles that scatter to direction Ω and speed v
per particle traveling in the differential phase space element.



Simplifications

I For notational simplicity we will make the assumption that the
discretization in speed (energy) is a solved problem, and we only need to
consider a single speed equation.

I Additionally, we will assume that the scattering is isotropic.

I Both of these are simplifications for real systems. These will contribute to
uncertainties later.
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Simplified Equations

I After these simplifications we can write the resulting equation as(
v−1∂t + Ω · ∇+ σt(x , t)

)
ψ(x ,Ω, t) =

σs(x , t)

4π
φ(x , t) + Q(x ,Ω, t),

where ψ = vN and

φ(x , t) =

∫
S2

dΩψ(x ,Ω, t) = 〈ψ〉.

I We will also assume that v = 1. This is the same as scaling the time
variable.

I Initial condition: ψ(x ,Ω, 0) = F (x ,Ω), and boundary conditions are inflow
conditions:

ψ(x ,Ω, t) = Γ(x ,Ω, t) for x ∈ ∂V , n̂ · Ω < 0.



Numerical Challenges

I Phase space complexity
I Need for thousands of unknowns per spatial degree of freedom

I Multiscale phenomenon
I In problems where the scattering is large, the transport equation

asymptotically limits to a diffusion equation for the particles
I Need numerical methods that preserve this fact when the mesh does not

resolve the collision length scales.

I Coupling to other physics (fluid flow, etc.)



Discrete Ordinates (Sn) method

I The discrete ordinates method is a collocation method in angle that solves
the transport equation along a particular directions (Ωj) and uses a
quadrature rule, {wj ,Ωj} to estimate the collision terms. (Chandrasekhar)

I Leads to a simple, triangular system of discrete equations for each
direction when the backward Euler method is used in time and a simple
iteration strategy is used

(Ωj · ∇+ σ∗t )ψ`+1
j (x , tn+1) =

σs(x , t)

4π

∑
j′

wj′ψ
`
j′(x , t

n+1) + Q∗j ,

σ∗t = σt + ∆t−1 and Q∗j = Q + ψj(x , t
n).

I This iteration procedure is called a transport sweep.

I As a result when, σs/σt is small this iteration convergences quickly,
otherwise need to include the solution of a diffusion equation in the
iteration.

I This is the best understood method for deterministic particle transport.



Transport Sweeps and Parallel Computing



Transport Sweeps and Parallel Computing

I Despite the
inherent
bottlenecks in
a transport
sweep, there is
a lot of work
to group
together to
gain
efficiencies.

I Can scale
reasonably well
to millions of
cores.
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Monte Carlo

I Rather than discretize phase space directly we sample particles and advect
them based on stochastic collision processes.

I Can be very accurate and operate on general domains in space and energy.

I Slow convergence N−1/2 typically limits applicability.

I For steady-state problems it is considered the gold standard, if you can
afford the simulation.



Spherical Harmonic Functions

I Decompose the angle Ω into components

Ω = (Ω1,Ω2,Ω3)T = (sinϑ cos(ϕ), sinϑ sin(ϕ), cosϑ)T

I The normalized, complex spherical harmonic of degree ` and order k are

Y k
` (Ω) =

√
2`+ 1

4π

(`− k)!

(`+ k)!
e ikϕPk

` (cosϑ) ,

where Pk
` is an associated Legendre function.

I For convenience, we use normalized, real-valued spherical harmonics mk
`

and for each degree `. For given N > 0, set

m` = (m−`` ,m−`+1
` , . . . , ,m`−1

` ,m`
`)

T and m = (mT
0 ,m

T
1 , . . . ,m

T
N )T

I The components of m form an orthonormal basis for the polynomial space

PN =

{
N∑
`=0

∑̀
k=−`

ck`m
k
` : ck` ∈ R for 0 ≤ ` ≤ N, |k| ≤ `

}
. (1)



Spherical Harmonics (PN ) Equations

I Spectral approximation in Ω

ψ ≈ ψPN ≡ mTuPN

where uPN = uPN (t, x) solves the PN equations{
∂tuPN + A · ∇xuPN + σauPN + σsGuPN = s , (t, x) ∈ (0,∞)× R3

uPN (0, x) = 〈mψ0(x , ·)〉 , x ∈ R3

with
I s := 〈mS〉
I A · ∇x ≡

∑3
i=1 Ai∂xi and each Ai = 〈ΩimmT 〉 is symmetric

I G ≥ 0 is diagonal

I Angle brackets denote integration over S2: 〈·〉 :=
∫
S2 (·)dΩ



Properties of the PN Equations

I Good Stuff

I Fast convergence for smooth solutions

I Preserve rotational invariance of the transport operator

I Harmonics are eigenfunctions of the scattering operator

I Bad Stuff

I Gibbs phenomena near wave fronts

I Negative values for the concentration 〈ψ〉 in multi-D

I May be ill-posed in steady-state (Ai can have zero eigenvalues)

I Challenging boundary conditions



The Line Source Problem: All Methods have issues1

(a) analytic (b) Monte-Carlo

(c) S6 (d) P1 (e) P5

1
T. A. Brunner. “Forms of Approximate Radiation Transport”, Tech. Rep. SAND2002-1778

Sandia National Laboratories, Jul 2002.



The issue is the closure

I The standard PN closure simply truncates the expansion for l > N.

I The Gibbs oscillations are a result.

I The negative densities are problematic for coupled simulations: what does
a negative absorption rate density mean?

I Other methods have been proposed to alleviate this issue
I The MN methods use the ansatz

ψ ≈ ep
T c

to close the system.
I Solve an optimization problem to assure that the ansatz is positive.

I Idea: Apply filters to the expansion to damp oscillations.



Back to the Linesource
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Test problem: Crooked Pipe

I This is a standard high energy density radiative transfer test problem.

I Blue region is optically thin (little interaction between radiation and
material)

I Red regions are optically thick (strong collisions between radiation and
material)

I Radiation source at left entrance.



Unfiltered calculation

Material temperature (in keV) at
t = 3.5 ns (from top to bottom)
left: P1, P3, P5

right: P7, P39

The white regions show where the radiation density is negative.



Locally filtered calculation

Material temperature (in keV) at
t = 3.5 ns (from top to bottom)
left: P1, P3, P5

right: P7, P39



Section 3

Uncertainty Quantification



The Parametric Uncertainty Quantification Problem

I Consider an output quantity from a transport calculation of the form

y =

∫
dV w(x ,Ω,E , t)ψ(x ,Ω,E , t).

I Such a quantity could be the total fission energy produced in the system
or the number of neutrons leaking out of the reactor.

I We are interested in the estimation of y as a function of the input
parameters: σt(E), σs(E).

I Because these inputs are functions that depend on energy and the
particular material, there can easily be hundreds/thousands of input
uncertainties

I Other possibilities are the shape of objects in the system, densities, etc.

I In may be the case that we are primarily interested in first-order or
second-order sensitivities to each of the parameters, pi :

y = y0 +
I∑

i=1

αi
∂y

∂pi
pi +

I∑
i=1

I∑
i′=1

αii′
∂2y

∂pi∂p′i
pipi′ .



Efficient Estimation via regularization

I One could estimate these sensitivities via finite differences or via an
adjoint approach. Both have downsides.

I We could interpret the equation above as a regression model and run the
code with various values of pi and estimate the coefficients.

I A greenhorn statistics student will tell you that estimating the coefficients
in the regression model

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε,

is impossible if the number of observations m is less than the number of
parameters N, and not likely to be accurate until m� N.

I This a common problem in many data mining analyses, e.g. my grocery
store has 1000s of potential variables that could explain what item I will
buy.

I Therefore, unless we want to run a very large number of simulations, the
m above, we cannot estimate all the β’s.



Efficient Estimation via regularization

I There are approaches that help this issue, but don’t exactly fix the
problem.

I Variable selection based on judgment is a key example,
I Adjoint-based approaches can also help, but are tricky in non-linear,

time-dependent, or multi-physics situations. These also are best for single
quantity of interest (QoI) situations.

I It turns out we can get robust estimates of sensitivities when the number
of simulations is smaller than the number of parameters we want to
estimate.

I The reason that this could work is that in most problems many of the
sensitivities are effectively zero, i.e. βi ≈ 0.

I What we need is a technique that determines which of these is zero, based
on the data and not based on an assumption.

I The issue is that this is clearly an ill-posed problem and we need to
constrain the space in which we look for a solution. This is done through
regularization of the problem.



The magic of the L1 norm

I We will cast the problem in terms of an optimization problem. For the
regression formulation one possibility is the problem

Find the βββ that minimizes ‖e‖2 + λ
∑
i

|βi |.

I This approach is a regularized regression problem called lasso regression
because in practice it sets some βi ’s to zero and “lassos” the important
variables.

I Like ordinary least squares regression it attempts to minimize the sum of
the squares of the error, but it also tries to minimize the magnitude of the
coefficients (the L1 norm of the vector βββ).

I The L1 norm is the reason that certain βi ’s are set to zero.



The magic of the L1 norm

I While there is rich literature on why these regularized optimization
problems work well in the L1 norm (see for instance the work of Candes
and Tao), here is a yeoman’s justification of why this might be so.

I Consider the problem of estimating the coefficients in the problem

y = a + bx + ε,

by minimizing ∑
i

ε2
i + (|a|p + |b|p)1/p

.

I The curve of equal value of (|a|p + |b|p)1/p is a circle for p = 2 and a
diamond for p = 1.

I The curves of equal value for ‖ε‖2 are ellipses.

I One can show that where the diamond intersects the ellipse of minimum
size will be closer to one of the axes.



The magic of the L1 norm

from https://tianyizhou.wordpress.com/2010/08/23/compressed-sensing-review-1-reconstruction-algorithms/
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Previous UQ Work

I In the nuclear field, Watanabe et al. used L1 minimization to estimate
first-order sensitivity coefficients for a pincell burnup problem with 5000
parameters. They needed 500 simulations to estimate the parameters
efficiently. These results did not leverage a regression framework, which
could lead to improvement.

I For climate uncertainty analysis, LLNL researchers have used lasso-type
approaches to estimate polynomial chaos expansion coefficients.

I In this presentation I’ll present the results of a bake-off to compare
different approaches to estimate second-order sensitivity coefficients, i.e.,
the quadratic and interaction terms neglected in a first-order sensitivity
analysis.



Non-Bayesian Regularization Regression Approaches

In these methods we explicitly change the minimization problem.

I Lasso regression (OLS plus an `1 penalty based on size of β’s):

β = argmin
β
{‖Y − Xβ‖2

2 + λ1‖β‖1} (2)

I Ridge regression (OLS plus an `2 penalty based on size of β’s):

β = argmin
β
{‖Y − Xβ‖2

2 + λ2‖β‖2
2} (3)

I Elastic net regression (Combination of Lasso and Ridge):

β = argmin
β

{
‖Y − Xβ‖2

2 + αλ1‖β‖1 + (1− α)λ2‖β‖2
2

}
(4)

I Dantzig selector (Minimize `∞ error in fit with `1 penalty on β’s):

β = argmin
β
{‖βT (Y − Xβ)‖∞ + λ1‖β‖1} (5)



Section 4

Model description



Problem settings

Lattice of TRIGA fuels pin modeled with MCNP

I QoI: keff



Problem descriptions

There are 299 sensitivity coefficients taken into account in this problem:
I 23 input parameters:

I 6 geometric parameters: e.g. r-fuel (fuel radius)
I 17 material parameters: e.g. ρ−Zr (Zr rod mass density)

I 253 pairwise interactions (23 choose 2)

I 23 quadratic terms

The aim is to investigate the sensitivity of the criticality to the parameters,
especially the second order terms. The model is:

δk

k
≈

23∑
i=1

ci

(
δxi
xi

)
+

22∑
i=1

23∑
j=i+1

cij

(
δxi
xi

)(
δxj
xj

)
+

23∑
i=1

cii

(
δxi
xi

)2

(6)

where ci , cij and cii , i = 1, · · · , 23, j 6= i , are the first order, interactive and
quadratic sensitivity coefficients, respectively.



Reference data

I We are going to compare reference sensitivity coefficients to the
coefficients computed by various regularized regression techniques using
many few code runs (cases).

I The reference coefficients are computed using 1058 cases.
I We need 46 total simulations for the linear and quadratic parameters
I 1012 simulations are needed for the 253 interactions (4 simulations for each)

I The goal of this research is to see if regularized regression techniques can
give coefficient estimates close to the references using many fewer
simulation runs than the 1058 cases.



Coefficient Estimation: Interactions (299 samples)

Blue dots are regression estimations, red lines are reference
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Coefficient Estimation: Quadratic (299 samples)
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Conclusions

I Particle transport problems are important in many fields.

I The efficient solution of these problems is important due to the rich phase
space.

I Uncertainty quantification is challenging because one needs many
simulations for a given system.

I Much more work to do.
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