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The equations that describe particle transport start off as an
integro-differential equation

» We are interested in the phase-space density of particles, N, that travel in
straight-lines between collisions. The equation that describes this is the
linear-Boltzmann equation:

(0e + v -V 4+ vou(x, t)) N(x,Q, v, t) =

/ dQ// dv' vios(x, 1, = Qv = VIN(x,Q, v, t) + Q(x,Q, v, t)
Sa 0

> Q €S, is the direction of the particle’s flight (angular variable), v is the
particle speed.

» The interaction probabilities (cross-sections) are the total cross-section o
which is the average number of collisions a particle undergoes with the
material medium per unit distance travelled, and

» The double-differential scattering cross-section, os(x,t,Q — Q,v/ — v)

is the mean number of particles that scatter to direction Q and speed v
per particle traveling in the differential phase space element.




Applications

This equation very accurately describes the behavior of a variety of transport
processes

>

>

Neutrons in a nuclear reactor, oil well, imaging

X-rays in high energy density situations: inertial confinement fusion,
astrophysical radiating shocks

Atmospheric radiative transfer
Neutrinos in core-collapse supernovae

Electron/ion transport in radiotherapy, space weather, electronics




Radical Simplifications

» For this talk we will make the assumption that the discretization in speed
(energy) is a solved problem, and we only need to consider a single speed
equation.

» Additionally, we will assume that the scattering is isotropic.

» Both of these are simplifications for real systems.
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Simplified Equations

» After these simplifications we can write the resulting equation as

os(x, t)
4

(V0 + Q- YV oulx 1) (x, 2, 1) = (x, 1) + Q(x, 2, 1),

where ¢ = v and
oxt) = [ d20(x2.0) = (0).
Sa

» We will also assume that v = 1. This is the same as scaling the time
variable.

» Initial condition: (x,,0) = F(x,Q), and boundary conditions are inflow
conditions:

PY(x,Q,t) =T(x,Q,t) forxedV, A-Q<O0.
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Numerical Challenges

» Phase space complexity
> Need for thousands of unknowns per spatial degree of freedom
» Multiscale phenomenon

> In problems where the scattering is large, the transport equation
asymptotically limits to a diffusion equation for the particles

> Need numerical methods that preserve this fact when the mesh does not
resolve the collision length scales.

» Coupling to other physics (fluid flow, etc.)




Discrete Ordinates (S,) method

» The discrete ordinates method is a collocation method in angle that solves
the transport equation along a particular directions (£2;) and uses a
quadrature rule, {w;j, Q;} to estimate the collision terms. (Chandrasekhar)

» Leads to a simple, triangular system of discrete equations for each
direction when the backward Euler method is used in time and a simple
iteration strategy is used

x t *
(- V+oi)yg H(x, t7) = ) Z wy s (x, £ + Q7
of =0+ At " and QF = Q + ¥j(x, t").
> As a result when, oy/oy is small this iteration convergences quickly,

otherwise need to include the solution of a diffusion equation in the
iteration.

» This is the best understood method for deterministic particle transport.




Monte Carlo

» Rather than discretize phase space directly we sample particles and advect
them based on stochastic collision processes.

» Can be very accurate and operate on general domains in space and energy.
» Slow convergence N~/2 typically limits applicability.

» For steady-state problems it is considered the gold standard, if you can
afford the simulation.




Spherical Harmonic Functions

» Decompose the angle Q into components

Q = (1,2, 2)" = (sind cos(y),sind sin(e), cos )"
» The normalized, complex spherical harmonic of degree ¢ and order k are

— k)
2041 (0= k) e"? Py (cos V) ,

I = [T 0+ k)

where PJ is an associated Legendre function.

» For convenience, we use normalized, real-valued spherical harmonics méf
and for each degree ¢. For given N > 0, set

I T | -1 NT T T T\T
me=(m, ,m, " ,...,,m, ,my) and m=(mg,m;,...,my)

» The components of m form an orthonormal basis for the polynomial space

N L
PNz{ZZc;mzzc;eRforogng,|kgz}. (1)

£=0 k=—¢




Spherical Harmonics (Py ) Equations

» Spectral approximation in Q

~ = T
N
’l/)w’l/]p =m up,

where up,, = up, (t, x) solves the Py equations

Owup, + A-Vyup, +0aup, +0sGup, =s, (t,x)€ (0,00) x R?
upy (0,x) = (myo(x;,)), x € R?
with
> s:=(mS)
> A- V= Z?:l A0y and each A; = (Q;mm7) is symmetric

> G > 0 is diagonal

> Angle brackets denote integration over §%: (-) := [,(-)dQ




Properties of the Py Equations

» Good Stuff

> Fast convergence for smooth solutions
> Preserve rotational invariance of the transport operator

> Harmonics are eigenfunctions of the scattering operator

» Bad Stuff

» Gibbs phenomena near wave fronts
> Negative values for the concentration (¢) in multi-D
> May be ill-posed in steady-state (A; can have zero eigenvalues)

> Challenging boundary conditions




1

The Line Source Problem: All Methods have issues

(a) analytic (b) Monte-Carlo

(d) P1 (e) Ps

1T. A. Brunner. “Forms of Approximate Radiation Transport”, Tech. Rep. SAND2002-1778
Sandia National Laboratories, Jul 2002. [m] = =




The issue is the closure

v

The standard Py closure simply truncates the expansion for / > N.

v

The Gibbs oscillations are a result.

» The negative densities are problematic for coupled simulations: what does
a negative absorption rate density mean?

v

Other methods have been proposed to alleviate this issue
» The My methods use the ansatz
P epTc

to close the system.
> Solve an optimization problem to assure that the ansatz is positive.

v

Idea: Apply filters to the expansion to damp oscillations.




Filter functions

Filtering is commonly used to handle spatial gradients in linear and nonlinear
advection. We use it here for the angular approximation.

Definition
A filter of order « is a real-valued function f € C*(R") that satisfies

() F(O)=1, (i) F?(0)=0, fora=1,...,a—1, (ii) F*(0) #£ 0.

> Several variations in the definition, but (i) and (ii) are standard.

> Define fyn := f(557)-

» To implement, apply the filter up, — urp, where
[urpy Je = fon[upy e

after each step of a time integration routine.?

2RGM, C.D Hauck, J. Comput. Phys., 229 (2010), pp. 5597-5614
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Filtered Spherical Harmonic Equations?

» The filtering procedure can be generalized to look like an anisotropic
scattering operator.

> Let ¢ = Yrp, = mTuPN , where ugp,, satisfies

Owupp, + A - Viurp, + oalirp, + 0sGurp, + 0:Grurp, =s

» The matrix Gf > 0 is diagonal with components

(Gt)e,0),(,6) = — log fo,n

It can be interpreted as anisotropic scattering or angular diffusion.

» The issue of choosing the filter strength remains.

3D. Radice, E. Abdikamalov, L. Rezzola, and C. Ott, A new spherical harmonics scheme for multi-dimensl
radiation transport |: static matter configurations, J. Comput. Phys., 242 (2013}, pp.648-669



Convergence of the Filtered Expansion

» Frank, Hauck and Kuepper give theorems for the convergence of filtered
Py.

> The error in the expansion

En = |lvrey — ¥lli2

converges at a rate that is the smaller of the order of convergence of the
unfiltered method, k, or the filter order, a:

Ey = O(mein(k,a)).




Test problem: Crooked Pipe

1.0 2.0 3.0 4.0 5.0 6.0
x (cm)

» This is a standard high energy density radiative transfer test problem.

» Blue region is optically thin (little interaction between radiation and
material)

> Red regions are optically thick (strong collisions between radiation and
material)

» Radiation source at left entrance.




Unfiltered calculation

Material temperature (in keV) at
t = 3.5 ns (from top to bottom)
left: P1, P3, Ps

right: P7, P3g

The white regions show where the radiation density is negative.




Uniformly filtered calculation

Material temperature (in keV) at
t = 3.5 ns (from top to bottom)
left: P1, P3, Ps

right: Pz, P3g

Filter strength value
With the Lanczos filter and o = 5000 m™!:

ot fl=1,No=7)~13m ' ~oy =20m " (2)




Choosing the location of the filter
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Figure: Material temperature T (in keV) at t = 3.5 ns for unfiltered Ps.

Choosing the location of the filter

» o7 on the order of the cross-section (same units)

> activated where negativity arises and in an upstream region of a
comparable size.




Local filter
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Figure: Value of o7 (in cm™1) for the locally filtered calculations.




Locally filtered calculation
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Material temperature (in keV) at

o t = 3.5 ns (from top to bottom)
3 left: Py, P3, Ps

right: P;, P3g
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T along x =2.75cm at t = 3.5 ns
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Computational Cost

» The solution for a given time step involves the solution of a linear system
of size Ny x Ng.

» We have not been able to develop a good preconditioner yet.

> The system has a non-trivial nullspace when there are no collisions.
» Increasing the filter strength does improve the convergence.
» Number of GMRES iterations for first timestep
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1000 1000

10° 10% 104 10° 10° 107

(a) Uniform filtering

(b) Local filtering




Enforcing Positivity

» For nonlinear problems, positivity may be a strict requirement.

» Our goal is to modify the FPy equations to enforce positivity.




Positive, Filtered Spherical Harmonics (FP; )

We implement the filter in the context of a kinetic scheme:

1. Given a kinetic distribution 1), compute

| €epy[4] = mTupp, [9] = m7 Fup, [4]

where F is a filtering matrix and up, [¢] = (mep).[4]

2. Find uFPK/[w], which solves

1
minimize 7/ &
ucRn 2 Js2

. T _ T
subject to / m udﬂf/ m ' upp, dQ
S2 S2

(mTu)(Q) >0, VQ,€Q

T

FPy[Y] —mul dQ

‘ 2

where Q is a quadrature set.

3. Advance the kinetic equation with initial condition

gpp?\r/ [4] = mTuFPE [¥]

4(.) is integration over [—1,1] or S%.



Convergence results




Convergence of the Positive Filtered Expansion

» The error in the expansion
Ey = ||¢FP,§ - ¢||L2

converges at a rate that is the smaller of the order of convergence of the
unfiltered method, k, or the filter order, a:

Ey = O(mein(k,a)).

» Same as the convergence for standard FPy .
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Linesource results
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Figure: Exact solution
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Line Source Efficiency
Which is more efficient: a better, more expensive limiter or a cheaper limiter
with more moments? The optimization is completely local, though so it should

scale.
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Figure: Serial Efficiency Comparison, based on L? error in
concentration.
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Conclusions

» Problems of particle transport are hard and there is no perfect method.

» Moment-based methods have some positive properties, but the also
drawbacks.

» Spectral Convergence is possible, but leads to issues with positivity and
oscillations.

» Filtering and optimization-based closures are promising, but still work to
do.
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