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Séptimo Encuentro en Aplicaciones de la Matemática
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The equations that describe particle transport start off as an
integro-differential equation

I We are interested in the phase-space density of particles, N, that travel in
straight-lines between collisions. The equation that describes this is the
linear-Boltzmann equation:

(∂t + vΩ · ∇+ vσt(x , t))N(x ,Ω, v , t) =∫
S2

dΩ′
∫ ∞

0

dv ′ v ′σs(x , t,Ω
′ → Ω, v ′ → v)N(x ,Ω, v , t) + Q(x ,Ω, v , t)

I Ω ∈ S2 is the direction of the particle’s flight (angular variable), v is the
particle speed.

I The interaction probabilities (cross-sections) are the total cross-section σt

which is the average number of collisions a particle undergoes with the
material medium per unit distance travelled, and

I The double-differential scattering cross-section, σs(x , t,Ω
′ → Ω, v ′ → v)

is the mean number of particles that scatter to direction Ω and speed v
per particle traveling in the differential phase space element.



Applications

This equation very accurately describes the behavior of a variety of transport
processes

I Neutrons in a nuclear reactor, oil well, imaging

I X-rays in high energy density situations: inertial confinement fusion,
astrophysical radiating shocks

I Atmospheric radiative transfer

I Neutrinos in core-collapse supernovae

I Electron/ion transport in radiotherapy, space weather, electronics



Radical Simplifications

I For this talk we will make the assumption that the discretization in speed
(energy) is a solved problem, and we only need to consider a single speed
equation.

I Additionally, we will assume that the scattering is isotropic.

I Both of these are simplifications for real systems.
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Simplified Equations

I After these simplifications we can write the resulting equation as(
v−1∂t + Ω · ∇+ σt(x , t)

)
ψ(x ,Ω, t) =

σs(x , t)

4π
φ(x , t) + Q(x ,Ω, t),

where ψ = vN and

φ(x , t) =

∫
S2

dΩψ(x ,Ω, t) = 〈ψ〉.

I We will also assume that v = 1. This is the same as scaling the time
variable.

I Initial condition: ψ(x ,Ω, 0) = F (x ,Ω), and boundary conditions are inflow
conditions:

ψ(x ,Ω, t) = Γ(x ,Ω, t) for x ∈ ∂V , n̂ · Ω < 0.



Numerical Challenges

I Phase space complexity
I Need for thousands of unknowns per spatial degree of freedom

I Multiscale phenomenon
I In problems where the scattering is large, the transport equation

asymptotically limits to a diffusion equation for the particles
I Need numerical methods that preserve this fact when the mesh does not

resolve the collision length scales.

I Coupling to other physics (fluid flow, etc.)



Discrete Ordinates (Sn) method

I The discrete ordinates method is a collocation method in angle that solves
the transport equation along a particular directions (Ωj) and uses a
quadrature rule, {wj ,Ωj} to estimate the collision terms. (Chandrasekhar)

I Leads to a simple, triangular system of discrete equations for each
direction when the backward Euler method is used in time and a simple
iteration strategy is used

(Ωj · ∇+ σ∗t )ψ`+1
j (x , tn+1) =

σs(x , t)

4π

∑
j′

wj′ψ
`
j′(x , t

n+1) + Q∗j ,

σ∗t = σt + ∆t−1 and Q∗j = Q + ψj(x , t
n).

I As a result when, σs/σt is small this iteration convergences quickly,
otherwise need to include the solution of a diffusion equation in the
iteration.

I This is the best understood method for deterministic particle transport.



Monte Carlo

I Rather than discretize phase space directly we sample particles and advect
them based on stochastic collision processes.

I Can be very accurate and operate on general domains in space and energy.

I Slow convergence N−1/2 typically limits applicability.

I For steady-state problems it is considered the gold standard, if you can
afford the simulation.



Spherical Harmonic Functions

I Decompose the angle Ω into components

Ω = (Ω1,Ω2,Ω3)T = (sinϑ cos(ϕ), sinϑ sin(ϕ), cosϑ)T

I The normalized, complex spherical harmonic of degree ` and order k are

Y k
` (Ω) =

√
2`+ 1

4π

(`− k)!

(`+ k)!
e ikϕPk

` (cosϑ) ,

where Pk
` is an associated Legendre function.

I For convenience, we use normalized, real-valued spherical harmonics mk
`

and for each degree `. For given N > 0, set

m` = (m−`` ,m−`+1
` , . . . , ,m`−1

` ,m`
`)

T and m = (mT
0 ,m

T
1 , . . . ,m

T
N )T

I The components of m form an orthonormal basis for the polynomial space

PN =

{
N∑
`=0

∑̀
k=−`

ck`m
k
` : ck` ∈ R for 0 ≤ ` ≤ N, |k| ≤ `

}
. (1)



Spherical Harmonics (PN ) Equations

I Spectral approximation in Ω

ψ ≈ ψPN ≡ mTuPN

where uPN = uPN (t, x) solves the PN equations{
∂tuPN + A · ∇xuPN + σauPN + σsGuPN = s , (t, x) ∈ (0,∞)× R3

uPN (0, x) = 〈mψ0(x , ·)〉 , x ∈ R3

with
I s := 〈mS〉
I A · ∇x ≡

∑3
i=1 Ai∂xi and each Ai = 〈ΩimmT 〉 is symmetric

I G ≥ 0 is diagonal

I Angle brackets denote integration over S2: 〈·〉 :=
∫
S2 (·)dΩ



Properties of the PN Equations

I Good Stuff

I Fast convergence for smooth solutions

I Preserve rotational invariance of the transport operator

I Harmonics are eigenfunctions of the scattering operator

I Bad Stuff

I Gibbs phenomena near wave fronts

I Negative values for the concentration 〈ψ〉 in multi-D

I May be ill-posed in steady-state (Ai can have zero eigenvalues)

I Challenging boundary conditions



The Line Source Problem: All Methods have issues1

(a) analytic (b) Monte-Carlo

(c) S6 (d) P1 (e) P5

1
T. A. Brunner. “Forms of Approximate Radiation Transport”, Tech. Rep. SAND2002-1778

Sandia National Laboratories, Jul 2002.



The issue is the closure

I The standard PN closure simply truncates the expansion for l > N.

I The Gibbs oscillations are a result.

I The negative densities are problematic for coupled simulations: what does
a negative absorption rate density mean?

I Other methods have been proposed to alleviate this issue
I The MN methods use the ansatz

ψ ≈ ep
T c

to close the system.
I Solve an optimization problem to assure that the ansatz is positive.

I Idea: Apply filters to the expansion to damp oscillations.



Filter functions

Filtering is commonly used to handle spatial gradients in linear and nonlinear
advection. We use it here for the angular approximation.

Definition
A filter of order α is a real-valued function f ∈ Cα(R+) that satisfies

(i) f (0) = 1 , (ii) f (a)(0) = 0, for a = 1, . . . , α− 1 , (iii) f (α)(0) 6= 0.

I Several variations in the definition, but (i) and (ii) are standard.

I Define f`,N := f ( `
N+1

).

I To implement, apply the filter uPN → uFPN where

[uFPN ]` = f`,N [uPN ]`

after each step of a time integration routine.2

2RGM, C.D Hauck, J. Comput. Phys., 229 (2010), pp. 5597–5614



Back to the Linesource
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Filtered Spherical Harmonic Equations3

I The filtering procedure can be generalized to look like an anisotropic
scattering operator.

I Let ψ ≈ ψFPN ≡ mTuPN , where uFPN satisfies

∂tuFPN + A · ∇xuFPN + σauFPN + σsGuFPN + σfGfuFPN = s

I The matrix Gf ≥ 0 is diagonal with components

(Gf)(`,k),(`,k) = − log f`,N

It can be interpreted as anisotropic scattering or angular diffusion.

I The issue of choosing the filter strength remains.

3D. Radice, E. Abdikamalov, L. Rezzola, and C. Ott, A new spherical harmonics scheme for multi-dimensional
radiation transport I: static matter configurations, J. Comput. Phys., 242 (2013), pp. 648–669



Convergence of the Filtered Expansion

I Frank, Hauck and Kuepper give theorems for the convergence of filtered
PN .

I The error in the expansion

EN = ‖ψFPN − ψ‖L2

converges at a rate that is the smaller of the order of convergence of the
unfiltered method, k, or the filter order, α:

EN = O(N−min(k,α)).



Test problem: Crooked Pipe

I This is a standard high energy density radiative transfer test problem.

I Blue region is optically thin (little interaction between radiation and
material)

I Red regions are optically thick (strong collisions between radiation and
material)

I Radiation source at left entrance.



Unfiltered calculation

Material temperature (in keV) at
t = 3.5 ns (from top to bottom)
left: P1, P3, P5

right: P7, P39

The white regions show where the radiation density is negative.



Uniformly filtered calculation

Material temperature (in keV) at
t = 3.5 ns (from top to bottom)
left: P1, P3, P5

right: P7, P39

Filter strength value

With the Lanczos filter and σf = 5000 m−1:

σf f (` = 1,N0 = 7) ≈ 13 m−1 ∼ σt = 20 m−1 (2)



Choosing the location of the filter

Figure: Material temperature T (in keV) at t = 3.5 ns for unfiltered P3.

Choosing the location of the filter

I σf on the order of the cross-section (same units)

I activated where negativity arises and in an upstream region of a
comparable size.



Local filter

Figure: Value of σf (in cm−1) for the locally filtered calculations.



Locally filtered calculation

Material temperature (in keV) at
t = 3.5 ns (from top to bottom)
left: P1, P3, P5

right: P7, P39



T along y = 0 at t = 3.5 ns



T along x = 2.75 cm at t = 3.5 ns
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Figure: Clockwise from top left: Unfiltered, Uniformly filtered, L2 error, Locally
Filtered



Computational Cost

I The solution for a given time step involves the solution of a linear system
of size Nx × NΩ.

I We have not been able to develop a good preconditioner yet.
I The system has a non-trivial nullspace when there are no collisions.

I Increasing the filter strength does improve the convergence.

I Number of GMRES iterations for first timestep
2 Results

2.1 Empirical values
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Figure 1: Iteration count for the first time step as a function of N and the filter strength �f (in cm�1), using
the Lanczos filter. As a reference, the value of �f for this test problem was in practice chosen to be 50 cm�1

(vertical line).

�f (cm�1) P1 P3 P5 P7 P9 P11 P13 P15 P17

0 520 837 962 1041 1095 1201 1288 1338 1385
0.1 518 832 956 1031 1088 1191 1279 1327 1377
0.5 512 809 932 1001 1061 1157 1241 1288 1330
1 505 785 903 967 1034 1123 1198 1243 1288
5 457 663 760 825 873 936 1002 1038 1072
10 406 564 655 731 780 825 877 902 937
50 246 367 432 482 528 564 606 630 663
100 190 291 356 411 451 493 530 559 598
500 130 192 238 277 321 352 387 414 438
1000 120 172 206 236 264 292 324 348 370
10000 108 135 147 160 169 180 186 197 205
105 91 112 119 120 127 134 140 145 147
106 62 79 92 101 108 112 114 115 118
107 53 56 61 67 73 78 83 87 92
108 53 53 53 54 54 56 57 59 61
109 53 53 53 53 53 53 53 53 53
1010 53 53 53 53 53 53 53 53 53

Table 1: Number of linear iterations for the first time step and uniform filtering. The practical value for
the Crooked Pipe is �f = 50 cm�1.

2



Enforcing Positivity

I For nonlinear problems, positivity may be a strict requirement.

I Our goal is to modify the FPN equations to enforce positivity.



Positive, Filtered Spherical Harmonics (FP+
N )

We implement the filter in the context of a kinetic scheme:

1. Given a kinetic distribution ψ, compute

EFPN
[ψ] = mTuFPN

[ψ] = mTFuPN
[ψ]

where F is a filtering matrix and uPN
[ψ] = 〈mψ〉.[4]

2. Find uFP+
N

[ψ], which solves

minimize
u∈Rn

1

2

∫
S2

∣∣∣EFPN
[ψ]−mTu

∣∣∣2 dΩ

subject to

∫
S2

mTu dΩ =

∫
S2

mTuFPN
dΩ

(mTu)(Ωq) ≥ 0 , ∀ Ωq ∈ Q

where Q is a quadrature set.

3. Advance the kinetic equation with initial condition

EFP+
N

[ψ] = mTuFP+
N

[ψ]

4〈·〉 is integration over [−1, 1] or S2.



Convergence results



Convergence of the Positive Filtered Expansion

I The error in the expansion

EN = ‖ψFP+
N
− ψ‖L2

converges at a rate that is the smaller of the order of convergence of the
unfiltered method, k, or the filter order, α:

EN = O(N−min(k,α)).

I Same as the convergence for standard FPN .
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Linesource results
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Line Source Efficiency
Which is more efficient: a better, more expensive limiter or a cheaper limiter
with more moments? The optimization is completely local, though so it should
scale.
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Conclusions

I Problems of particle transport are hard and there is no perfect method.

I Moment-based methods have some positive properties, but the also
drawbacks.

I Spectral Convergence is possible, but leads to issues with positivity and
oscillations.

I Filtering and optimization-based closures are promising, but still work to
do.


	Convergence results
	Linesource results

