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The current high-fidelity simulation paradigm 

•  Think about what simulation(s) to run, count on being able to 
investigate results after the simulations. 

•  Data is large but manageable. 

•  Select features that are important for analysis after the collection of 
data. 

•  For solution verification, uncertainty quantification, and other 
situations where an ensemble of calculations is needed  
⇒ Post-processing and feature extraction from stored results. 

•  Focus on what the particulars of the system/experiment/
phenomenon are 
⇒ Less so on what to do with the results afterwards 
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What will Exascale Data Analysis Look Like 

•  I don’t know for sure. 

•  The data generated will be large and generated with velocity. 

•  It is very likely that it will be difficult, if not impossible, to 
⇒ Transmit the data 
⇒ Compute complex functions, transformations to the data 
⇒ Store the data 

•  Part of this is due to power 
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Fig. 2. Energy cost of data movement relative to the cost of a flop for current and 2018 systems 
(the 2018 estimate is conservative and doesn’t account for the development of an advanced 
memory part). The biggest change in energy cost is moving data off-chip.  Therefore, future 
programming environments must support the ability of algorithms and applications to exploit 
locality which will, in turn, be necessary to achieve performance and energy efficiency. 

In an ideal world, we would design systems that would never subject applications 
to any performance constraints. However, component costs and power usage force 
system architects to consider difficult trade-offs that balance the actual cost of system 
components against their effect on application performance.  For example, if doubling 
floating point execution rate nets a 10% gain in overall application performance, but 
only increases system costs by 5%, then it is a net benefit despite degrading system 
balance. It is important to have an open dialog to fully understand the cost impacts of 
key design choices so that they can be evaluated against their benefit to the applica-
tion space. 

Cost Functions 

The Cost of Power: Even with the least expensive power available in the US, the cost 
of electricity to power supercomputing systems is a substantial part of the Total Cost 
of Ownership (TCO).  When burdened with cooling and power distribution over-
heads, even the least expensive power in the U.S. (< 5cents/KWH) ultimately costs 
$1M per Megawatt per year to operate a system.  To keep the TCO manageable 
DOE’s Exascale Initiative Steering Committee adopted 20MW as the upper limit for a 
reasonable system design [1,2].  This limit is movable, but at great cost and design 
risk.  

 
The Cost of a FLOP: Floating point used to be the most costly component of a sys-
tem both in terms of design cost and power.  However, today, FPUs consume a very 
small fraction of the area of a modern chip design and a much smaller fraction of the 

Shalf, J., Dosanjh, S., & Morrison, J. (2011). 
Exascale Computing Technology Challenges.  
Lecture Notes in Computer Science (Vol. 6449, 
pp. 1–25) 
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What types of data analysis infrastructure will 
we need? 

•  The data analysis will need to be moved closer to the computation. 

•  Code-user will need to decide beforehand: 
⇒ What metrics to calculate 
⇒ What analysis do we need to do 
⇒ What features do we require to do the analysis 
⇒ What visualizations do we want (and what is the resolution of those 

visualizations) 
⇒ What is the coarsest granularity I need the data? 

•  Will have to know what is interesting before you do the simulation. 

•  We will also have to consider predictive models and analysis 
modalities that do not require having all of the data at once. 
⇒ Analysis is not a post-process anymore 

•  Could allow for interesting benchmarking of models 
⇒ Build and Test a surrogate model at every step of the simulation 
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There is Potential Multi-fidelity Models 

•  True exascale simulations will still be rare. This coupled with the 
lack of post-simulation data exploration will keep petascale 
simulations valuable. 

•  Sometimes we can formulate the lower fidelity models so that when 
informed by the high fidelity model, it gives the same result. 
⇒ Fhighres(x) = Flowres(x, θ) 
⇒ θ(Fhighres) 

•  Common examples of this type of low fidelity model (oftentimes 
called closures) 
⇒ Variable Eddington factor derived from transport solution particle transport 
⇒ Equations of state informed by a kinetic model 

•  Even if the model is only approximate, but informed by the high 
fidelity simulation, it can improve the workhorse calculations. 

•  This can be further enhanced by statistical models that help bridge 
the fidelity gap. 
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STEERING (ENABLING) 
SIMULATION WITH 
PREDICTIVE ANALYTICS 
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Arbitrary Lagrangian-Eulerian (ALE) 
Hydrodynamics 

•  In simulating hydrodynamics, especially where multiple materials 
are present, the arbitrary Lagrangian-Eulerian (ALE) method is a 
widely used method. 

•  The method combines the two approaches 
⇒ Allows the mesh to move with the flow (Lagrangian) 

•  Preserves numerical interfaces 
⇒ Keep the mesh fixed (Eulerian) 

•  Numerical diffusion in solution 

•  Combine the two by evolving solution with a moving mesh and 
performing an Eulerian relaxation step 
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The Problem with ALE 

•  Ideally, one would evolve the simulation without any relaxation to 
preserve material interfaces.  

•  This can lead to “mesh tangling” that crashes the simulation. 

•  Therefore, the relaxation is used to prevent this sort of tangling.  

•  Over-relaxation can lead to numerical errors and loss of accuracy. 
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A Data Analytics Approach to Improving Simulation Workflow

Even when the mesh geometry is not distorted, simulations can fail when physical quantities become
distorted. A well-known example of this is anomalous hot spots, as illustrated in Figure 1(b), which
can unexpectedly occur when a physical quantity, such as energy density, spikes to unphysical levels
within a mesh zone and eventually causes the simulation to halt. Which failure afflicts a simulation code
depends on how the ALE method was implemented, i.e., more Lagrangian versus more Eulerian. For
KULL, a WCI code for modeling high energy density physics, it tends to perform Lagrangian as long as
possible, which results in more mesh zone tanglings. Whereas for ALE3D, a WCI code for modeling fluid
and elastic-plastic response of materials, it tends to relax the mesh to Eulerian when necessary, which
produces less mesh zone tanglings but can still suffer from anomalous hot spots.
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(a) Mesh zone tangling

(b) Anomalous hot spots

Figure 1: Illustrations of simula-
tion failures in ALE workflows.

Once a simulation failure occurs, the manual tuning process that
we aim to semi-automate proceeds as follows. First, a user examines
the simulation state, which includes both mesh quality metrics (e.g.,
skew and aspect ratio) and computed physical quantities (e.g., pressure
and energy), to determine what caused the failure. Once the cause
of failure is identified, then a user relies on his/her knowledge and
experience to determine which parameters to adjust to avoid this failure.
In other words, that knowledge and experience provides a user with a
statistical model of how to avoid that failure given the conditions of the
simulation state. Hence, we propose to codify that user knowledge and
experience through machine learning to derive those statistical models.

Machine learning has been applied with success to failure prediction
in other problem domains. For example, supervised learning has been
used for predicting faults in motor vehicles [36], computer hardware [30],
and industrial chemical processes [6]. Machine learning has also been
applied to failure avoidance in domains such as robotized assembly
tasks [25] and high-performance computing [23].

Preliminary Work: Our ongoing preliminary work in developing LAGER [12, 29] for KULL shows
tremendous promise for applying machine learning algorithms to avoid mesh zone tanglings. The learning
algorithm employed by LAGER is a random forest [5], which constructs a multitude of decision trees,
where each tree is based on a random subset of features from the simulation state (Figure 2(a)). Random
forests are based on a highly accurate ensemble learning algorithm, and have numerous advantages,
including the ability to rank features based on importance. We decided to use a zone’s geometric features
(mesh quality metrics) to determine how close it is to tangling (Figure 2(b)). To create the training data,
we collected feature data on many zones at different numbers of simulation cycles before they tangle. In
order to predict tangling events, we constructed a regression function (linear, logistic, and piecewise-linear
cosine functions) based on assigning a value ' to each zone, which expresses how close that zone is to
tangling. During the Eulerian relaxation step, we calculate the desired motion of each node by using the
average of the ' values predicted by the random forest for each zone adjacent to the node.

We applied LAGER on three well-known test problems: helium bubble, shock tube (Figure 2(c)),
and simple hohlraum, and it successfully prevented certain zone tanglings at different mesh resolutions.
In simulations where tangling is not encountered, small zones may cause the simulation time step to
become small – essentially preventing the simulation from progressing. When trained to prevent this
from happening, LAGER was successful in maintaining a large simulation time step. To compare with
experimental results, we extracted the material boundary (red line) and overlaid on experimental photos
for a shock tube to qualitatively demonstrate the preserved physics (Figure 2(d)).

Research Activities: We will investigate supervised learning algorithms [11, 28] to develop classifiers
that can predict simulation failures by using the simulation state as learning features. Building upon
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Human Relaxers 

•  The way the amount of relaxation is typically chosen is by hand, by 
experts who have run many simulations. 

•  Often this is done by running the simulation until it crashes then 
⇒ The expert goes in and sets relaxation parameters based on 

•  Mesh metrics (e.g., aspect ratio) 
•  Physical parameters (e.g., pressure, temperature) 
•  Gut instinct / past experience 

•  This works, but is not ideal.   
⇒ Training someone to do this is a long process 
⇒ Slow 

•  Hard to output many simulations for uncertainty quantification 
runsets. 

•  What is the uncertainty in different human relaxers? 
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The robots are coming for our relaxers 

•  What we would like to do is map the knowledge/process of the best 
human relaxers to a statistical model. 

•   Build a model to predict whether a zone will need to be relaxed 
based on the state of the simulation. 

•  The training set would be simulations of a class of problems  
⇒ Dependent variable is whether a zone will cause the simulation to fail. 

•  Ideal output would give relaxation automatically that 
⇒ Minimizes human interaction with simulation (fewer crashes) 
⇒ Minimizes the error introduced by relaxation 

•  Current approach uses random forests to predict the needed 
relaxation. 

•  Introduces a two new problems: feature selection and 
understanding of relaxation error. 
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Feature Selection 

•  Common problem: encode human decisions into a statistical model 

•  When a human decides relaxation parameters, several 
considerations are possible 
⇒ Time history of zone 
⇒ Relation to physical features in the problem (e.g., distance from shock) 

•  This could be problematic for large-scale simulations. 
⇒  At a given time step in the simulation, it can be expensive to access 

•  Data from previous time steps (data can’t fit in memory and could be on disk) 
•  Non-local data (ask for data on another processor, across network) 

•  Need a balance between accessible data and useful data. 
⇒ How far can we get with predicting the needed relaxation? 
⇒ Sequential enhancement of available data as needed by  

•  Accuracy and availability considerations 
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In situ or On-the-Fly Relaxers 

•  To this point the automatic relaxers are built by storing the results 
of many simulations, and 

•  Post-processing the results to extract features and then fit the 
models. 

•  In an exascale reality, we can’t afford to store all of that data, load 
it in, build a model, … 

•  We want a system that learns as it goes: 
⇒ While a suite of simulations runs the model evolves 

•  Train the model on any failures 
•  Automatically roll back solution to before the failure, relax, and continue running. 

⇒ The initial model will be based on results from previous simulations. 

•  The idea is to make the creation of the statistical model a one step 
process, rather than separating data production and analysis. 
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Which is the better relaxer? 

•  Above I mentioned that we want our relaxation to be set to minimize errors 
introduced by the relaxer. 

•  Traditionally, the measure of relaxer efficacy is whether the code ran to 
completion. 

•  Intuitively we might look at the amount of mixing in zones, because this is 
introduced/enhanced by the relaxer. 

•  Two different approaches to this: 
⇒ Measure of mass fraction differences in zone (alpha) 
⇒ Variability of material speed of sound in zone (beta) 
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Is this a good measure of simulation 
accuracy? 

•  Test problem of a ICF capsule 
implosion. 

•  Have a human-tuned relaxer as 
the baseline. 

•  Loosen (increase the 
relaxation) or tighten the 
relaxer and look for changes in 
the  
⇒ Typical quantities of interest 

•  ablation front or time of 
maximum density (bang time) 

⇒ Our mixed-related quantities 

•  Want to show that the mix 
quantities are correlated with 
standard QoIs 
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Yes, the relaxer matters 
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The mix variables are a good metric for 
solution quality 
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Validating the Mixing Metrics and the Future 

•  We still need to show that our solutions are correct and 

•  That the “ideal” relaxer is the right target to shoot for. 

•  Simulations are ongoing with a converged Eulerian code to show 
that minimizing mix metrics gives us the best solution. 

•  Once we  are confident in the mixing metrics, we can further explore 
the creation of statistical models and enhancing the phase space. 

•  Run a variety of problems and see how transferable the results are. 

•  … 
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Coda: We live in interesting times 

•  Exascale will push us to think about simulation and how we 
consume/analyze simulations differently. 

•  The changes will make the way we think about multiple fidelity 
models. 

•  To get the benefits of exascale, we need to make sure that humans 
aren’t the bottleneck. 
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