
Department of Aerospace & Mechanical Engineering, University of Notre Dame

Non-Equlibrium Radiative
Transfer Solutions using a
Two-Group Diffusion Model

Ryan G. McClarren
rmcclarr@nd.edu

August 26, 2019



1 Model Development

2 Problem Specification

3 Green’s Function

4 Uniform Source Solution

5 Conclusions

Outline

2/26 Ryan McClarren Two-Group Benchmark



• The pursuit and discovery of benchmark solutions for code
verification has a long history in the high-energy density
radiative transfer community.

• The formulation of a material model that linearizes the equations
by Pomraning:1979fj led to a series of solutions to gray (i.e.,
one-group) radiative transfer problems over the ensuing decades
using various transport models.

• Diffusion (Ganapol:1983go; Su:1996wr)
• P1 (Mcclarren:2008dl)
• Transport (Su:1997ux)

• There have also been solutions that include the additional physics
from a 3 temperature model using diffusion
(Mcclarren:2011km) and transport
(mcclarren2011benchmarks).

• The utility of these verification solutions is evident in their
widespread use in the academic and laboratory communities in
code verification.

We need benchmarks for code verification,
but most benchmarks are gray (1-group).
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• We present semi-analytic solutions to this model using
non-equilibrium diffusion.

• These benchmark problems can be solved by radiative transfer
codes that implement the multigroup model and allow different
opacity and emissivity constants, as well as
temperature-dependent heat capacities.

• Temperature independent heat capacities are required to solve the
existing Su-Olson benchmarks.

• Opacities and emissivities that are not equivalent are required for
non-LTE physics, so it does exist in many codes.

• This gives the additional benefit of verifying some parts of the
non-LTE capability.

Our approach defines a novel heat capacity & emissivity
that are functions of temperature.
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• A non-gray solution to the radiative transfer equations using
transport and diffusion has been presented by Su and Olson
(Su:1999tk) and extended by (wollaeger2013radiation).

• These solutions use the “picket fence” photon energy model that
assumes there are two different values for the opacity that exist in
adjacent, differentially-sized ranges of energy that repeat.

• While fences “make good neighbours”, Pulitzer prize-winning
plays, 1990’s television dramas, and middlemen for stolen
property, their value in describing the properties of radiative
transfer is considerably less useful.

• Most physics codes do not adopt the picket fence model except for
running this benchmark.

• The picket fence model is very different than the common
multigroup model used in most radiation transport codes.

The existing non-gray benchmarks are not multigroup.
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Consider the non-equilibrium radiation diffusion system in slab
geometry for the spectral radiation energy density, Eν(x, ν, t), and the
material temperature, T(x, t):

∂Eν

∂t
−
∂

∂x
c

3κ(x, ν, T)
∂

∂x
Eν+cκ(x, ν, T)Eν = 4πχ(x, ν, T)B(ν, T)+Qν(x, t),

(1)

Cv
∂T
∂t
=

∫ ∞

0
(cκ(x, ν, T)Eν − 4πχ(x, ν, T)B(ν, T)) dν. (2)

In these equations κ(x, ν, T) is the spectral opacity, χ(x, ν, T) is the
emissivity of the material, and the Planck function is given by

Bν(ν, T) =
2hν3

c2
1

e hν
kT − 1

, (3)

with k and h being the Boltzmann and Planck constants respectively.

We begin with the multifrequency radiation diffusion
model.
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A two-group model is defined by a cutoff frequency ν0 and integrating
the Planck function to define two integral emission sources:

B1(T) =
∫ ν0

0
B(ν, T) dν, B2(T) =

∫ ∞

ν0

B(ν, T) dν. (4)

The sum of these is equal to the integral of the Planck function over all
frequency:

B1(T) + B2(T) =
∫ ∞

0
B(ν, T) dν =

acT4

4π
, (5)

where
a =

8π5k4

15h3c3
=

4σSB
c
= 0.01372

GJ
cm3-keV

, (6)

with σSB the Stefan-Boltzmann constant. We define

B1(T) = f (T)
ac
4π

T4, B2(T) = (1 − f (T))
ac
4π

T4. (7)

We then define a two-group model based on a cutoff
frequency.
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• Note that 0 ≤ f (T) ≤ 1 is the fraction of emission in group 1.
• The Bi(T) are each a positive fraction of the total emission.
• A quickly converging form for f (T) with r = hν0/kT is

f (T) = 1 −
15
π4

∞∑
n=1

(
r3

n
+
3r2

n2
+
6r
n3
+

6
n4

)
e−nr, (8)

•
lim
ν0→0

f (T) = 0, lim
ν0→∞

f (T) = 1. (9)

• These limits indicate that as the group cutoff goes to zero there is
no emission in group 1, and as the cutoff goes to infinity, all of
the emission is in group 1.

• The sum converges to a maximum absolute error of less than
2 × 10−3 with only five terms in the sum and less than 10−6 with
70 terms.

The fraction of emission in each group is a function of
temperature and ν0.
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We also define averaged radiation energy densities

E1(x, t) =
∫ ν0

0
Eν(x, ν, t) dν, E2(x, t) =

∫ ∞

ν0

Eν(x, ν, t) dν, (10)

and similarly we define Q1(x, t) and Q2(x, t). Then using appropriately
averaged values for the opacities and emissivities, (i.e., Planck or
Rosseland means) we get the equations

∂E1
∂t
−
∂

∂x
c

3κ1(x, T)
∂

∂x
E1 + cκ1(x, T)E1 = acT4χ1(x, T)f (T) + Q1(x, t),

(11)
∂E2
∂t
−
∂

∂x
c

3κ2(x, T)
∂

∂x
E2 + cκ2(x, T)E2 = acT4χ2(x, T)f (T) + Q2(x, t),

(12)
Cv
∂T
∂t
= c (κ1(x, T)E1 + κ2(x, T)E2)−acT4 [χ1(x, T)f (T) + χ2(x, T)(1 − f (T))] .

(13)

The complete model has emission in each group
proportional to aT4.
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• We consider problems where κ1 and κ2 are independent of time,
space, and temperature.

• The emissivity in group 1 is constant, χ̄1.
• The emissivity in group 2 is prescribed to be

χ2 = χ̄2
f (T)

1 − f (T)
. (14)

• This is done so that the resulting equations have emission that
has the same temperature dependence in both groups.

• When the temperature dependence is the same for each group, we
will be able to linearize.

The problem we solve has a particular form for χ2(T) that
is a function of f (T).
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Upon making these substitutions we get

∂E1
∂t
−

c
3κ1

∂2

∂x2
E1 + cκ1E1 = χ̄1acf (T)T4 + Q1(x, t), (15)

∂E2
∂t
−

c
3κ2

∂2

∂x2
E2 + cκ2E2 = χ̄2acf (T)T4 + Q2(x, t), (16)

Cv
∂T
∂t
= c (κ1E1 + κ2E2) − acf (T)T4 ( χ̄1 + χ̄2) . (17)

This problem specification leads to a simpler set of
equations.
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• We specify the heat capacity of the problem to be

Cv =
∂

∂T
f (T)aT4. (18)

• This makes

∂

∂t
f (T)aT4 =

[
∂

∂T
f (T)aT4

]
∂T
∂t
= Cv

∂T
∂t
. (19)

• In the limit ν0 →∞, i.e., a one group problem, we recover the
familiar form of Cv ∝ T3 because f (T) = 1 in this limit.

• We define a new variable U(x, t) as

U(x, t) = f (T)aT4. (20)

• Therefore, to go from U to T we have to solve a nonlinear
equation.

Pomraningum is replaced with a new element that has the
same heat capacity in the gray limit.
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We introduce a scaling where τ = cκ1t, z = κ1x, and

Ẽi =
Ei

aT4
H
, Ũ =

U
aT4

H
, Q̃i =

Qi

κ1caT4
H
, (21)

where i = 1, 2 and TH is a reference temperature. With these
definitions we get a set of non-dimensional equations:

∂Ẽ1
∂τ
−
1
3
∂2

∂z2
Ẽ1 + Ẽ1 = χ̃1Ũ + Q̃1(z, τ), (22)

∂Ẽ2
∂τ
−

1
3κ̃2

∂2

∂z2
Ẽ2 + κ̃2Ẽ2 = χ̃2Ũ + Q̃2(z, τ), (23)

∂Ũ
∂τ
=

(
Ẽ1 + κ̃2Ẽ2

)
− Ũ ( χ̃1 + χ̃2) . (24)

κ̃2 =
κ2
κ1

χ̃i =
χ̄i

κ1
.

We will solve a linear, non-dimensional system to get our
benchmark.
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• We consider a source in group 1 of the form

Q̃1(z, τ) =

{
δ(z) 0 ≤ τ ≤ τ0
0 otherwise

, Q̃2 = 0 (25)

• This source is on from time τ = 0 until τ = τ0.
• The initial conditions are Ẽ1(z, 0) = Ẽ2(z, 0) = Ũ(z, 0) = 0.
• The boundary conditions are that the solutions go to zero as |z| → ∞,
i.e., we are in an infinite medium.

• Taking a Fourier transform in space and a Laplace transform in time
Eqs. (22) - (24) become(

s̃ +
k2

3
+ 1

)
Ẽ1(k, s) = χ̃1Ũ(k, s) +

1
s −

e−as

s
√
2π

, (26)

(
s̃ +

k2

3κ̃2
+ κ̃2

)
Ẽ2(k, s) = χ̃2Ũ(k, s), (27)

sŨ(k, s) = Ẽ1(k, s) + κ̃2Ẽ2(k, s) − ( χ̃1 + χ̃2)U(k, s). (28)

We use Fourier and Laplace Transforms to find the
Green’s Function for a source in group 1.
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• The inverse Laplace transform can be performed analytically
using computer algebra software; we use Mathematica.

• The resulting functions are too long to detail here, as they would
take several pages to write out due to the fact that the roots of a
cubic polynomial with symbolic coefficients appear repeatedly.

• Instead we write the inverse Laplace transformed solutions as
Ẽ1(k, τ), Ẽ2(k, τ), Ũ(k, τ) respectively.

• To get the solution as a function of z and τ we must perform the
inverse Fourier transform numerically.

• In particular we must compute

Ẽ1(z, τ) =
1
√
2π

∞∫
−∞

Ẽ1(k, τ)e−ikz dk, (29)

and similar evaluations are required for Ẽ2(z, τ) and Ũ(z, τ).

The inverse Laplace transform can be computed
analytically.
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• The inverse Laplace transform can be performed analytically
using computer algebra software; we use Mathematica.

• The resulting functions are too long to detail here, as they would
take several pages to write out due to the fact that the roots of a
cubic polynomial with symbolic coefficients appear repeatedly.

• Instead we write the inverse Laplace transformed solutions as
Ẽ1(k, τ), Ẽ2(k, τ), Ũ(k, τ) respectively.

• To get the solution as a function of z and τ we must perform the
inverse Fourier transform numerically.

• In particular we must compute

Ẽ1(z, τ) =
1
√
2π

∞∫
−∞

Ẽ1(k, τ)e−ikz dk, (30)

and similar evaluations are required for Ẽ2(z, τ) and Ũ(z, τ).

The inverse Laplace transform can be computed
analytically.
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• We use the Green’s function to solve a problem of a finite source of
strength over the range z ∈ [−z0/2, z0/2] such that

Q̃1(z, τ) =

{
1 z ∈ [−z0/2, z0/2] and τ ≤ 10
0 otherwise

,

by replacing z in Eq. (30) with |z − z′ | and integrating over z′ from
−z0/2 to z0/2. This leads to the solution for Ẽ1

Ẽ1(z, τ) =
1
√
2π

z0/2∫
−z0/2

dz′
∞∫

−∞

dk Ẽ1(k, τ)e−ik |z−z′ | =
1
√
2π

∞∫
−∞

Ẽ1(k, τ)S(z, k) dk,

(31)

S(z, k) =
z0/2∫

−z0/2

dz′ e−ik |z−z′ | =


1
k

(
2ie− 1

2 ikz0 cos(kz) − 2i
)
−

z0
2 ≤ z ≤ z0

2
1
k

(
2e−ikz sin

(
kz0
2

))
otherwise

.

(32)

Integrating over the Green’s function gives the solution to
a uniform source problem.
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• We need only compute a single numerical integral to get the
solution.

• The other functions are found in a similar manner.
• In performing the integrals, we can make further simplifications.

1 The solutions Ẽ1(z, τ), Ẽ2(z, τ), Ũ(z, τ) are all real, so the
imaginary part can be ignored.

2 The solution will be symmetric about the origin so the Fourier
transform of the solution will also be even. Therefore, we only
need to integrate over the range k ∈ [0,∞) and multiply the result
by 2 to compute the inverse transform.

For each function we compute a single numerical integral
of the form of Eq. (31).
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• The source is in group 1, making
Ẽ1 > Ẽ2.

• U is larger than E1 at τ = 10 because
a significant amount of energy has
been absorbed and radiated by the
material into both groups.

• The values shown are computed
using Mathematica’s NIntegrate
function using the multi-periodic
integration strategy
(krommer1998computational)
with a working precision of 40
digits and converge to 7 digits of
accuracy, though we only report 6
digits in our tables.
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t=10

We give values for κ̃2 = 1/3, χ̃1 = 3/4, χ̃2 = 1/4, τ0 = 10,
and z0 = 1.
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Here are the solutions in real units with TH = 1 keV and
κ1 = 1 cm−1

21/26 Ryan McClarren Two-Group Benchmark



Table: Ẽ1(z, τ) for a problem with κ̃2 = 1/3, χ̃1 = 3/4, χ̃2 = 1/4, τ0 = 10,
and z0 = 1.

z/τ 0.1 0.316228 1 3.162278 10 31.622777 100

0.01 0.093989 0.242639 0.489454 0.846950 1.379522 0.291839 0.141724
0.1 0.093217 0.239110 0.483215 0.838600 1.369842 0.291741 0.141714
0.17783 0.091239 0.231200 0.469482 0.820304 1.348658 0.291527 0.141692
0.31623 0.082265 0.204393 0.425117 0.761931 1.281306 0.290849 0.141621
0.45 0.060833 0.159212 0.355952 0.672960 1.179299 0.289838 0.141516
0.5 0.047639 0.136293 0.322820 0.631130 1.131599 0.289371 0.141467
0.56234 0.031693 0.108128 0.281324 0.578011 1.070468 0.288721 0.141399
0.75 0.007546 0.050649 0.182492 0.440691 0.905040 0.286319 0.141146
1 0.000641 0.015768 0.097978 0.302342 0.722392 0.282111 0.140699
1.33352 0.002435 0.039205 0.177924 0.532940 0.274809 0.139906
1.77828 0.000109 0.009789 0.083539 0.352972 0.262376 0.138508
3.16228 0.005595 0.094088 0.209985 0.131814
5.62341 0.008832 0.109659 0.112791
10 0.000151 0.019773 0.069430
17.78279 0.000334 0.015993

Tables for Reference

22/26 Ryan McClarren Two-Group Benchmark



Table: Ẽ2(z, τ) for a problem with κ̃2 = 1/3, χ̃1 = 3/4, χ̃2 = 1/4, τ0 = 10,
and z0 = 1.

z/τ 0.1 0.316228 1 3.162278 10 31.622777 100

0.01 0.000037 0.000827 0.012442 0.103160 0.426661 0.263759 0.138118
0.1 0.000036 0.000815 0.012326 0.102704 0.425781 0.263688 0.138109
0.17783 0.000035 0.000787 0.012077 0.101717 0.423872 0.263533 0.138088
0.31623 0.000031 0.000701 0.011316 0.098680 0.417946 0.263044 0.138023
0.45 0.000023 0.000581 0.010259 0.094364 0.409382 0.262312 0.137926
0.5 0.000020 0.000530 0.009805 0.092462 0.405545 0.261974 0.137881
0.56234 0.000015 0.000465 0.009211 0.089916 0.400334 0.261503 0.137818
0.75 0.000006 0.000290 0.007382 0.081440 0.382280 0.259761 0.137585
1 0.000001 0.000135 0.005172 0.069360 0.354348 0.256700 0.137171
1.33352 0.000041 0.002970 0.053833 0.313693 0.251358 0.136439
1.77828 0.000007 0.001276 0.036438 0.259107 0.242180 0.135147
3.16228 0.008417 0.124200 0.202213 0.128948
5.62341 0.024836 0.118042 0.111229
10 0.000803 0.026662 0.070148
17.78279 0.000636 0.017277

Tables for Reference
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Table: Ũ(z, τ) for a problem with κ̃2 = 1/3, χ̃1 = 3/4, χ̃2 = 1/4, τ0 = 10, and
z0 = 1.

z/τ 0.1 0.316228 1 3.162278 10 31.622777 100

0.01 0.004657 0.038104 0.216108 0.706021 1.447721 0.388874 0.188821
0.1 0.004637 0.037628 0.213206 0.698641 1.437848 0.388742 0.188807
0.17783 0.004577 0.036528 0.206771 0.682453 1.416247 0.388454 0.188778
0.31623 0.004238 0.032486 0.185556 0.630645 1.347603 0.387544 0.188684
0.45 0.003151 0.024726 0.151256 0.551223 1.243751 0.386186 0.188544
0.5 0.002341 0.020397 0.134328 0.513701 1.195232 0.385559 0.188479
0.56234 0.001374 0.015126 0.113312 0.466215 1.132999 0.384686 0.188388
0.75 0.000227 0.005791 0.066626 0.345870 0.963841 0.381462 0.188052
1 0.000012 0.001386 0.031387 0.228898 0.775692 0.375816 0.187456
1.33352 0.000153 0.010575 0.128652 0.578770 0.366022 0.186402
1.77828 0.000005 0.002124 0.057239 0.389652 0.349363 0.184541
3.16228 0.003761 0.111381 0.279376 0.175633
5.62341 0.012613 0.146096 0.150316
10 0.000266 0.026726 0.092592
17.78279 0.000470 0.021382

Tables for Reference
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• We have developed a novel model for producing truly multigroup
radiative transfer benchmark solutions.

• These solutions can be used as benchmark solutions for radiation
diffusion codes by specifying the problem with a temperature
dependent heat capacity given by Eq. (18) utilizing the
summation formula for f (T) given in Eq. (8).

• The value for the emissivity in group 2 must be temperature
dependent and given by Eq. (14).

• To convert the values in the solution tables for Ũ to temperatures,
one must first multiply Ũ by aT4

H and then solve the nonlinear
equation:

Ũ(z, τ)aT4
H = f (T)aT4(z, τ),

for T(z, τ). This solution can be computed once and tabulated for
a given unit system.

We have developed the first two-group, thermal radiation
diffusion benchmarks.
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