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Abstract—Inertial confinement fusion (ICF) experiments are
designed using computer simulations that are approximations
of reality, and therefore must be calibrated to accurately predict
experimental observations. In this work, we propose a novel tech-
nique for calibrating from simulations to experiments, or from
low fidelity simulations to high fidelity simulations, via “transfer
learning”. Transfer learning is a commonly used technique in the
machine learning community, in which models trained on one
task are partially retrained to solve a separate, but related task,
for which there is a limited quantity of data. We introduce the
idea of hierarchical transfer learning, in which neural networks
trained on low fidelity models are calibrated to high fidelity
models, then to experimental data. This technique essentially
bootstraps the calibration process, enabling the creation of
models which predict high fidelity simulations or experiments
with minimal computational cost. We apply this technique to
a database of ICF simulations and experiments carried out at
the Omega laser facility. Transfer learning with deep neural
networks enables the creation of models that are more predictive
of Omega experiments than simulations alone. The calibrated
models accurately predict future Omega experiments, and are
used to search for new, optimal implosion designs.

I. INTRODUCTION

Many physical systems and experiments are designed using
models – analytical theories or computer simulations that
attempt to take into account the various components of the
system to determine the efficiency, performance, and relia-
bility of a design. In applications where the physics of the
system is well known, the models can be accurate depictions
of reality, however when dealing with systems at extreme
conditions (such as extremely high temperatures, pressures,
and densities), the physics is not as well understood and
the models are not always validated with experimental data.
This is often the case in inertial confinement fusion (ICF),
in which lasers are used to compress a small fuel capsules
filled with deuterium and tritium to high density, temperature,
and pressure in order to create conditions that are favorable for
nuclear fusion reactions [1], [2]. The computer simulations that
model ICF experiments are complex and involve a wide variety
of physics models: radiation hydrodynamics, atomic physics,
nuclear burn physics, laser and plasma physics, magnetic
field effects, and more [3]. These codes are validated in
certain regimes, but acquiring data at the extreme conditions
reached in ICF experiments is challenging and expensive, thus
the accuracy of the models away from the validation data
is not well known. Furthermore, fully-integrated simulations

which model everything from the laser beam propagation to
the particle transport within the fuel capsule are extremely
expensive to run in 3D with high resolution. Researchers
often need to make many approximations, such as running
the simulation in 2D with axi-symmetric constraints, in order
to efficiently search the parameter space for promising ex-
perimental designs. The use of surrogate models trained on
large databases of simulations have enabled rapid exploration
of design spaces [4], [5], but these models are only as good
of a representation of reality as the simulations upon which
they are trained.

When the simulations used to design new ICF experiments
contain simplifying assumptions, it is expected that there will
be discrepancies between the simulation prediction and what is
observed in the experiment. A common statistical approach to
correcting an inaccurate simulator is model calibration – using
experimental data to “calibrate” an inaccurate model to pro-
duce one which is more consistent with reality. Model calibra-
tion is a broadly-researched topic [6]–[9], with one of the most
popular techniques developed by Kennedy and O’Hagan [10].
In this approach, the true model is assumed to be an additive
combination of a simulator, Gaussian distributed error due to
measurement uncertainty, and an unknown discrepancy term
which is learned using experimental data. The form of this
discrepancy term is often specified by the user (for example,
the user might chose a Gaussian process discrepancy with a
particular kernel function) and the complexity is limited by
the amount of experimental data that is available. Researchers
have explored Bayesian calibration with discrepancy terms
for ICF data [11]; in this work, we propose an alternative
calibration technique borrowed from the machine learning
community, referred to as “transfer learning”, for calibrating
ICF models.

Traditional machine learning models gain knowledge by
observing large quantities of labeled data. For example, if the
task is to classify photos of animals, a model will need to be
exposed to millions of labeled images of all the animals it is
expected to classify, in a variety of different scenarios, colors,
perspectives, etc, in order to classify the animals correctly.
Supervised learning tasks are straightforward to solve when
large quantities of data are available, however many of these
techniques fail when limited to small sets of labeled data.

Transfer learning is an alternative learning technique that
can help overcome the challenge of training on small data
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sets. Transfer learning is a method for using knowledge
gained while solving one task, and applying it to a different,
but related task. This approach is most commonly used for
image classification [12]–[14], for which there are many large
databases of labeled images [15]–[17] and several pre-trained
neural network models that are available for download, such
as AlexNet [18] and Inception [19]. These neural networks
have been studied extensively, and they appear to learn how
to recognize images in a logical series of steps as you traverse
hidden layers in the models. First, the networks often search
for edges in the images, then for simple geometric patterns,
and eventually begin to recognize specific characteristics, such
as eyes, arms, ears, etc [19]. In general, the deeper in the
network you go, the finer the details the network appears to
focus on. It therefore seems logical to expect that for a neural
network trained on any image dataset, the first several hidden
layers are essentially the same – they learn about features
common to all images. One can thus take a pre-trained neural
network, freeze the first several layers of weights, and focus
on re-training only the last few layers on a new image dataset
to learn how to appropriately classify this new set of images.
The old frozen layers are where the network learns to “see”;
the last few are where the network learns to “recognize”
specific types of images. Transfer learning is the process of
taking a network trained on a large dataset, freezing several
layers of the network, then retraining the unfrozen layers on
a different, often smaller dataset. As an example relevant to
ICF, researchers at the National Ignition Facility (NIF) [20]
have used transfer learning to classify images of different
types of damage that occur on the optics at the NIF. There
are not enough labeled optics images to train a network from
scratch, but transfer learning with a network pre-trained on
ImageNet [15] produces models which classify optics damage
with over 98% accuracy. This methodology has enabled the
group to automate their damage inspection by letting the
network process the images of optical components, rather than
having an optics expert inspect each image manually [21].

In ICF it is often the case that we do not have enough experi-
mental measurements to train a machine learning model on the
experimental data alone. Image classification is not the primary
task of interest in ICF, so traditional transfer learning using
a pre-trained open-source model is not appropriate. However,
it is possible to create massive databases of ICF simulations
for neural network training [5], [22]. The simulations are
suspected to be a good reflection of reality, but require tuning
to be more consistent with experiments. We therefore propose
the use of transfer learning as a non-parametric approach for
calibrating a simulation-based neural network to experiments.
The general concept is illustrated in Figure 1: Train a feed-
forward neural network on simulation data to relate simulation
inputs to observable outputs. Next, freeze many of the layers
of the neural network, but retrain a small number of layers
of the network using the sparse set of experimental data for
which the inputs and output observables are known.

The feasibility of using transfer learning to produce neu-
ral networks that accurately predict the outcomes of ICF
experiments is tested on data generated at the Omega laser
facility [23] at the Laboratory for Laser Energetics (LLE). In

Fig. 1. To transfer learn from simulations to experiments, the first three layers
of the simulation-based network are frozen, and the remaining two layers are
available for retraining with the experimental data.

section II we introduce a proposed hierarchical approach to
transfer learning for numerical simulation and experimental
data. In section III, we compare standard and hierarchical
transfer learning for the Omega dataset, and use the transfer
learned models to study the discrepancies between the Omega
simulations and experiments in section IV.

II. HIERARCHICAL TRANSFER LEARNING

Computer simulations of complex physical systems are
often modeled at varying levels of fidelity. Fast, low fidelity
models are used to explore vast design spaces for optimal
settings, and expensive high fidelity models might be used in
interesting regions of design space to compute predictions of
planned experiments. The high fidelity simulations are often
more accurate and reliable than the fast, approximate models,
but the expense of running the simulation often prevents their
use in large parameter scans. It might be possible to create
models that emulate high fidelity simulations with reduced
computational cost with transfer learning. For example, a
model trained on a dense set of 1D simulations could be
calibrated to a sparse set of 2D simulations that fill the
same design space. Rather than running a dense set of 2D
simulations to train a 2D surrogate model, an equally accurate
surrogate might be obtained by transfer learning from 1D
to 2D with a relatively small number of 2D simulations,
saving substantial computational resources. Furthermore, this
2D-calibrated model can be subsequently calibrated to exper-
imental data. If the 2D model is a better reflection of reality
than the 1D model, the transfer learning step between 2D and
the experiment should be easier than jumping from 1D directly
to the experimental data. We refer to this technique of transfer
learning from low to subsequently higher fidelity simulations
to the experimental data as “hierarchical transfer learning”.

To demonstrate the utility of hierarchical transfer learning,
consider the simple function:
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f(a, x) = xeax, (1)

where x and a are random variables; x between [-1,1] and a
between [0,1]. This expression will be the “experiment” or true
function. We also have a low and high fidelity approximation
of the experiment:

flow(a, x) = x, (2)

fhigh(a, x) = x+ ax2, (3)

which are the first (low fidelity) and second (high fidelity)
order Taylor expansions for the true function, respectively.
This problem is used to study the benefits of hierarchical
transfer learning; specifically to see if stepping through the
hierarchy results in better models than calibrating directly from
low fidelity to experimental data.

This study uses fully-connected neural networks designed
with the algorithm “deep jointly-informed neural networks”
(DJINN) [24]. DJINN is chosen for its efficiency in choosing
an appropriate neural network architecture for arbitrary data
sets, and eliminates the need for extensive hyper-parameter
optimization. The algorithm uses a decision tree model trained
on the data, and maps the decision tree structure into a
neural network architecture with initialized weights. The net-
works have rectified linear unit activation functions [25], and
minimize the L2 loss with weight regularization using the
Adam optimizer [26] in Tensorflow [27]. DJINN performs
particularly well for inertial confinement fusion data [28], [29],
which is the focus of sections III and IV. For further details
on the algorithm, the reader is referred to the publication or
publicly-available software for DJINN [24].

For this comparison, DJINN models with 3 hidden layers
are trained to map from (x, a) to f(x, a) or one of the
approximations in Equations 2-3. First, the average explained
variance score (averaged over 5 random training/testing data
splits of 80/20%) for DJINN models trained on experiments
alone is computed; this is the baseline to which various transfer
learning techniques is compared, as the transfer learned models
are not expected to exceed the accuracy of a DJINN model
trained purely on experimental data. Next, transfer learning
from high fidelity simulations to experiments, then from low
fidelity simulations to experiments, is tested. Finally, transfer
learning from low to high fidelity, and then to experiments
is performed to evaluate the benefits of hierarchical transfer
learning. To compare the models, the mean and standard
deviation of the explained variance score are computed. A
Student’s t-test [30] is performed to determine if the trans-
fer learned models are statistically significantly different in
performance than a model trained exclusively on experiments.
The explained variance scores and p-values from the Student’s
t-test are summarized in Table II;]. The neural network hyper-
parameters are noted in Table I and are kept the same for
all of the models; these parameters are manually tuned to
optimize performance. The choice to retrain the final layers of
the model is motivated by applications of transfer learning to
image recognition models; finer details are often the focus of

TABLE I
HYPER-PARAMETERS FOR ORIGINAL MODEL AND TRANSFER LEARNING

FOR THE TAYLOR EXPANSION EXAMPLE.

Original Model Parameters
Number of models 5

Hidden layer widths 4-8-14; 4-7-15, 4-8-14;
4-7-15; 4-7-14

Learning rate 0.004
Batch size 50
Epochs 300

Transfer Learning Parameters
Retrained layers Final 2
Learning rate 0.0001
Batch size 1
Epochs 300

the final layers, while the first layers in the networks focus on
large scale features [12]–[14]. Similarly for regression tasks,
modifying the final layers of the network allow for simple
modifications to the network’s predictions, while modifying
early layers could lead to substantial nonlinear changes to the
overall response surface. This is a design choice that is used
throughout the remainder of the manuscript, however it is not
a necessary requirement; the layers chosen for retraining can
also be optimized for a specific task.

For this simple example, there is not a statistically sig-
nificant difference between a model trained exclusively on
a large dataset of experiments, models that are trained on
high fidelity simulations and calibrated to experiments, and
models that are hierarchically calibrated. However, these three
models are statistically significantly better than the model
which is calibrated directly from low fidelity to the experi-
ments, illustrating that there is an advantage of informing the
model of high fidelity data prior to experimental calibration.
In order to make an accurate emulator of the experiments,
the cost of each of these routes should be the determining
factor in which method to choose; however it is expected in
most cases that the hierarchical method, which requires the
least number of experiments and/or high fidelity simulations,
is the least expensive approach. For this simple example
the computational cost is negligible, but for applications in
which complex multi-physics systems are being modeled, the
computational cost difference between low and high fidelity
simulations can be substantial; for such systems experiments
are also often costly and limited in number.

In Table II only a single size dataset is considered for
the hierarchical model. To determine the minimum number
of high fidelity simulations and experiments that is needed
to create a model that is not significantly different than
the baseline (experiment only) surrogate, the mean explained
variance score is computed as the dataset sizes are varied.
First, the minimum number of high-fidelity points that are
required to produce a transfer-learned model that is of similar
performance to a model trained exclusively on 100 high
fidelity simulations is determined. Next, the necessary number
of experiments needed to re-calibrate this model to be on par
with the experiment-only baseline model is determined. As in
the models from Table II, the number of points in the dataset
includes training and testing data, which are split into 80/20%
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TABLE II
COMPARISON OF HIERARCHICAL AND ONE-STEP TRANSFER LEARNING (TL) TO DIRECT MODELING OF EXPERIMENTS. LOW/HIGH FI. INDICATES DATA

PRODUCED WITH THE LOW/HIGH FIDELITY SIMULATIONS, RESPECTIVELY. EXP. INDICATES “EXPERIMENTAL” DATA PRODUCED WITH THE ANALYTIC
EXPRESSION IN EQ. 1.

Model Mean±SD
Explained Variance p-value

Train with 100 exp. 0.994 ± 0.004 -
Train with 100 high fi.;

TL with 25 exp. 0.994 ± 0.006 0.957

Train with 100 low fi.;
TL with 25 exp. 0.954 ± 0.041 0.016

Train with 100 low fi.;
TL with 50 high fi.
+ TL with 25 exp.

0.981 ± 0.025 0.279

Fig. 2. “High fidelity” prediction quality as the number of high fidelity data
points used for transfer learning from low fidelity data is increased. Transfer
learned models require approximately 30 high fidelity data points to achieve
a model accuracy that is comparable to a model trained exclusively on 100
high fidelity simulations.

sets. The transfer learning parameters are held constant as
recorded in Table I, and each model starts with the same low
fidelity surrogate trained on 80 data points and validated on
the remaining 20 points.

Figure 2 illustrates how the transfer learning quality im-
proves as the number of high fidelity data points is increased;
the error bars reflect the variation in performance when the
testing/training datasets are shuffled. Transfer learning with
about 30 high fidelity samples produces models that per-
form similarly to models trained exclusively on high fidelity
simulations. Thus the first step in the hierarchical calibra-
tion is performed with 30 high fidelity simulations. Next,
the minimum number of experimental data points needed to
calibrate this model to the experiments is determined. Figure 3
illustrates the quality of the transfer learned model predictions
as the number of experiments is varied. For this example,
performance comparable to the baseline is achieved with 25
experiments; beyond this the improvement in model quality is
minimal.

Whether it is beneficial to perform hierarchical transfer

Fig. 3. Experimental prediction accuracy as the number of experimental
data points is increased in hierarchical transfer learning. Models are first
trained on 100 low fidelity simulations, calibrated to high fidelity with 30
high fidelity data points, then subsequently calibrated to the experiments. The
model quality converges with about 25 experiments, and is comparable to the
performance of a model trained on 100 experiments alone.

learning depends on the relative expense of the varying levels
of fidelity in simulations and the experiments. If 100 low
fidelity and 30 high fidelity simulations are less expensive
than 100 high fidelity simulations, it is worth taking the
hierarchical approach for subsequently calibrating to 25 ex-
periments; however there may be situations in which running
a high fidelity database is preferred. This example suggests
that hierarchical transfer learning does offer improvements
over transfer learning from low fidelity data directly to the
experiments. The hierarchical calibration approach could also
be improved by optimizing where the high fidelity simula-
tions and experiments are placed in the design space; future
work will explore sampling strategies for efficient hierarchical
transfer learning.

The previous results are for a very simple, low dimensional
function that is fast to evaluate. In the next sections, the
same technique is applied to a real-world application: ICF
experiments from the Omega laser facility.
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III. TRANSFER LEARNING FOR ICF MODEL CALIBRATION

The performance of hierarchical transfer learning is next
tested on a real-world dataset containing 23 experiments
from the Omega laser facility that lie within a 9D design
space. A database of 30k Latin hypercube sampled [31], [32]
LILAC [33] simulations span the 9D space encompassing
the experiments. The nine input parameters varied in the
databases include laser pulse parameters: the average drive,
drive rise time, energy on the target, the first picket power,
foot power, foot width, and foot picket width, and capsule
geometry parameters: the ice thickness and the outer radius of
the capsule.

The 30k simulations are low fidelity; they are 1D, do
not account of laser-plasma interactions (LPI) such as cross-
beam energy transfer (CBET) [34]–[36], and use flux-limited
thermal diffusion models [37]. Each simulation requires about
ten wall-clock minutes to run on a single CPU. Each of the
23 experiments is accompanied by a high fidelity simulation,
which is a 1D LILAC simulation with CBET, more accurate
equations of state [38], and non-local transport; these simula-
tions require approximately ten wall-clock hours to run. Both
the low and high fidelity simulations produce a large number
of scalar outputs; 19 of which are included in the following
analysis. There are only 5 observables available for all 23
experiments that are common to the simulation database that
will be used to test transfer learning with experimental data.

The low fidelity simulation-based neural networks are
trained using DJINN, these models are referred to as “low
fidelity DJINN” models. In section III-A, transfer learning is
used to calibrate from low fidelity to high fidelity simulations,
and then to experiments.

A. Hierarchical transfer learning with the Omega dataset

The hierarchical approach, in which the low fidelity model
is calibrated first to high fidelity simulation data, then to the
experimental data, is compared to transfer learning directly
from low fidelity simulations to experiments for the Omega
database. The models transfer learned to high fidelity simu-
lations are referred to as “high fidelity DJINN” models, and
those that are subsequently transfer learned to experiments as
“experiment DJINN” models. If the high fidelity simulations
are more accurate depictions of reality than the low fidelity
simulations, priming the DJINN model with high fidelity in-
formation prior to calibrating to the experiments could improve
the ability of the model to adapt to the experimental data.

An ensemble of five low-fidelity DJINN models is trained
on the database of 30k low fidelity simulations. The models
predict all 19 observables simultaneously and are individually
cross-validated. The variance between DJINN models, each
of which have been trained on a different random 80% subset
of the data, will provide uncertainty estimates on the model
predictions. The hyper-parameters used to train the networks
are summarized in Table III. The mean explained variance
score of the low fidelity models for each output is given in
Table IV.

The same ensemble of low fidelity DJINN models are
used to compare hierarchical calibration to calibration di-

TABLE III
HYPER-PARAMETERS FOR ORIGINAL MODEL AND TRANSFER LEARNING

FOR THE OMEGA DATASET.

Original Model Parameters
Number of models 5

Hidden layer widths 11-13-22-16; 11-14-19-26; 11-14-24-16;
11-15-29-30; 11-14-22-29

Learning rate 0.004
Batch size 1500
Epochs 400

Transfer Learning Parameters
Retrained layers Final 2
Learning rate 0.0003
Batch size 1
Epochs 2300

TABLE IV
MEAN EXPLAINED VARIANCE SCORES ON THE TEST DATASETS FOR FIVE

DJINN MODELS TRAINED ON RANDOM 80% SUBSETS OF THE 30K
LOW-FIDELITY LILAC SIMULATIONS.

Observable: Mean Explained Variance
Absorption Fraction 0.991 R0 0.962
Adiabat 0.886 RhoR 0.968
Burnwidth (BW) 0.869 Shock Mass 0.856
BangTime 0.990 RhoMaxBT 0.962
Convergence Inner 0.964 Tion 0.956
Convergence Outer 0.962 Tion DD 0.959
In-flight aspect ratio (IFAR) 0.885 Vi 0.971
Peak Kinetic Energy 0.981 Yield 0.944
Pressure 0.958 Yield DD 0.949
RhoNAve 0.967

rectly from low fidelity simulations to experiments. The low
fidelity DJINN models are calibrated independently, each on
a different random subset of the high fidelity or experimental
data. For each of the models, the first three layers of weights
are frozen, and the remaining two layers are available for
retraining, as shown in the cartoon in Figure 1. Note that the
architecture of the networks is not reflected in this cartoon;
the true architectures are given in Table III for the ensemble
of five DJINN models. The last two layers of weights are
retrained to convergence for 2000 epochs with a batch size
of one and a learning rate of 0.0003 in the Adam optimizer
(these parameters are tuned to optimize predictive performance
of the models). Each model is trained on a random 90% of
the experimental data (20 points) and tested on the remaining
10% (3 points). The low fidelity and post-shot simulations
have 19 outputs, but the experiments only have 5 available
observables. To calibrate to the experiments, the cost function,
which is the MSE of the 19 scaled outputs, is modified such
that the missing 14 outputs are not weighted. More explicitly,
the cost becomes a weighted MSE where the weights are zero
for outputs not measured in the experiment, and unity for
those that are observed in the experiment. The predictions for
the remaining 14 observables may change in non-physically
motivated ways, thus we focus only on the 5 available observ-
ables. An equivalent approach to the weighted cost function
would be to train the low fidelity and high fidelity DJINN
models with only the 5 outputs available in the experiment.
We choose to retain all 19 outputs so the accuracy of the high
fidelity calibration for all 19 observables can be evaluated.
Note that all input and output data is scaled [0,1], using the
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parameter ranges set by the database of 30k simulations, prior
to training. This prevents the cost function from being biased
toward outputs that are larger in magnitude due to the choice
of units.

First we consider transfer learning from the low fidelity
simulations to the high fidelity simulations. Figure 4 illustrates
the prediction error (calculated on training and testing data
combined), computed as:

Error =
(Prediction)− (High fidelity truth)

(High fidelity truth)
, (4)

for all nineteen available outputs for the uncalibrated (low
fidelity) and calibrated (high fidelity) DJINN models. The error
bars reflect the standard deviation in prediction errors from the
ensemble of DJINN models; the points on Fig. 4 illustrate the
mean error.

The low fidelity and high fidelity simulations differ signifi-
cantly in their predictions of the nineteen observables, shown
by the error in the blue points of Figure 4. The low error in the
red points indicates that the networks are able to successfully
learn the high fidelity outputs via transfer learning.

The high fidelity calibrated models are next calibrated to
the experimental data, again by transfer learning the last two
layers of the network – the same layers that were modified
to calibrate to the high fidelity data. The mean and standard
deviation of final prediction error is now computed using the
experiment as the ground truth:

Error =
(Prediction)− (Experiment truth)

(Experiment truth)
, (5)

The prediction quality is illustrated in Fig. 5 for the low
fidelity, high fidelity, and experiment DJINN models.

Figure 5 illustrates that the high fidelity simulations are
not necessarily more predictive of reality than the low fidelity
simulations, however transfer learning to experiments is still
successful. The largest error for transfer learning is in the
yield, due to the model needing to adjust its predictions by
over an order of magnitude for most experiments, however
the mean prediction error for all observables is close to zero.

Since the post-shots are no closer to the experiments than
the low fidelity models, hierarchical modeling does not offer
significant benefits for this dataset; comparable results are
achieved by transfer learning directly from low fidelity simula-
tions to the experiments. Table V records the average explained
variance ratio for each the experimental observables for the
hierarchical models, and those that are calibrated directly from
low fidelity to experiments. The explained variance ratios are
computed on the test dataset, and are averaged for the five
models.

The previous analyses involve randomly choosing the train-
ing and testing data for model calibration. To illustrate how
these models can be used to predict the outcomes of future
experiments, a model calibrated to the high fidelity simulations
is calibrated to the experiments using only the oldest 19
experiments in the dataset. The model is tested on the 4
most recent experiments; the predictions are shown in Figure
6. Training on the old data and predicting the four most

TABLE V
EXPLAINED VARIANCE SCORES FOR MODELS CALIBRATED FROM LOW

FIDELITY TO HIGH FIDELITY SIMULATIONS TO EXPERIMENTAL DATA, AND
FOR MODELS CALIBRATED DIRECTLY FROM LOW FIDELITY SIMULATIONS

TO EXPERIMENTS. THE HIGH FIDELITY SIMULATIONS ARE NOT AN
ACCURATE PICTURE OF REALITY, AND THUS THERE ARE NO SIGNIFICANT
BENEFITS OF FIRST CALIBRATING TO THE HIGH FIDELITY DATA FOR THIS

PARTICULAR DATASET.

Mean±SD Explained Variance
Observable Hierarchical Low fi. - Exp. p-value
Burnwidth 0.975 ± 0.023 0.889 ± 0.079 0.139
Bangtime 0.987 ± 0.015 0.942 ± 0.092 0.364
ρR 0.874 ± 0.097 0.835 ± 0.179 0.712
Tion 0.988 ± 0.009 0.924 ± 0.094 0.211
Yield 0.818 ± 0.143 0.956 ± 0.034 0.096

recent experiments requires the model to extrapolate in input
space, away from the old experimental data. The model
is able to successfully predict the outcomes of the newest
four experiments, demonstrating it does have the ability to
successfully extrapolate away from the experimental data, but
within the bounds of the simulations. It should be noted
that the same hyper-parameters given in Table III are used
when training on the old data and predicting the most recent
experiments. Since these hyper-parameters were chosen by
doing random selections of training/testing data, the more
recent experiments could have implicitly influenced the choice
of the hyper-parameters. A more fair comparison would have
held the four most recent experiments from the choice of
hyper-parameters as well, although it should be noted that the
performance of the models is robust to minor perturbations
in the learning rate and number of training epochs and it is
unlikely that optimization of these parameters without the four
most recent experiments would have resulted in significantly
different model performance.

The low generalization error of the transfer learned models
is a result of hyperparameter tuning that prevents over-fitting of
“catastrophic forgetting” [39]. Over-fitting is when a machine
learning model essentially memorizes the training data and
cannot accurately predict data that is not included in the
training set. Catastrophic forgetting is a related challenge that
occurs in transfer learned models, in which the model is over-
trained on the new task, and thus forgets all knowledge of the
original task for which it was trained. In the case of the Omega
dataset, the neural network would “forget” all knowledge of
the simulation data and would simply learn how to fit the
experimental data, and thus its extrapolation properties would
not be informed by the simulation data, as desired. The risk
of over-training to the experimental data can be reduced by
limiting the learning rate, the number of training epochs, and
the number of retrained weights in the transfer learning step.
Limiting these hyper-parameters prevents the neural network
from changing significantly, and thus it retains memory of
the simulation data on which it was originally trained. High
cross-validation scores and the ability to extrapolate away from
the experimental data used in the training step indicates that
the model is unlikely to be over-fitting to the experimental
data. Although caution should still be taken when extrapolating
away from the experiments, it appears that small extrapolations
are tolerated, and the models can be updated after each
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Fig. 4. Prediction error (with the high fidelity simulation as the ground truth) for calibrated and uncalibrated DJINN models. The low fidelity model predicts
high fidelity observables with significant error, as the models contain different physics. The models calibrated to high fidelity data are able to predict all 19
high fidelity observables with low error.

Fig. 5. Prediction error (with the experiment as the ground truth) for low fidelity DJINN models, DJINN models calibrated to the high fidelity data, and
DJINN models calibrated to the experimental data. The experimentally calibrated models predict the five experimental observables with low error.

experiment to enable further exploration away from the current
data.

IV. EXPLORING DISCREPANCIES BETWEEN SIMULATIONS
AND OMEGA EXPERIMENTS WITH TRANSFER LEARNING

A result of hierarchical transfer learning is that it produces
three sets of models which emulate low fidelity simulations,
high fidelity simulations, and experiments. Studying the dis-
crepancies between these models gives insight into the differ-
ent physics included in the simulations and the experiment.

A primary use of ICF implosion simulations is to find
optimal design settings for experiments. An interesting ap-
plication of the three models is thus to search for “optimal”
designs using each fidelity surrogate and determine if the
simulation-based models suggest a similar “optimal” design as
the experiment-informed model. For this exercise, we define an

optimal design as one that maximizes the experimental ignition
threshold factor (ITFX) [40]:

ITFX ∝ Yield · (ρR)2. (6)

where ρR is the areal density. The resulting optimal designs
are illustrated in Fig. 7.

There are several important differences between the three
optimal designs. First, consider the differences between the
low fidelity (blue) and high fidelity (red) designs. The low
fidelity design prefers high compression of a thick capsule,
and achieves this by driving the capsule with a very high
power. This differs from the high fidelity design, which prefers
a lower power and thinner shell in order to achieve a similar
implosion velocity and yield. The high fidelity design includes
CBET effects, so it is reasonable for this design to lower
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Fig. 6. Predictions of new experiments (yellow circled in bold black) after transfer learning using previous experimental data. The model is able to accurately
predict new experiments, which are small extrapolations in input space from the old experimental data. The yellow data points indicate the training data
predictions, the points with black outlines are predictions for the test data. The blue and red points indicate the low and high fidelity DJINN model predictions
of the experiments, respectively.

Fig. 7. Designs which optimize ITFX according to the low fidelity, post-shot, and experiment DJINN models. The three designs are distinct due to the lack
of accurate physics models, asymmetries, and other experimental sources of performance degradation not included in the simulations.

the peak power to avoid performance degradation from laser-
plasma interactions [41].

Next consider the experimental design: unlike the high
fidelity design, this design adjusts the picket and the foot of
the pulse to guard against hydrodynamic instabilities that are
not modeled in 1D simulations. Lowering the foot of the pulse
(which occurs around 0.75 ns) lowers the adiabat inside the
shell, allowing for higher compression and therefore higher
areal density. To mitigate instabilities associated with higher
compression, the picket of the pulse (occurring around 0.2
ns) is increased to increase the adiabat on the outer surface
of the shell. The higher outer adiabat reduces hydrodynamic
instabilities by increasing the ablation velocity [42]–[44]. The
experimental capsule is thicker and is driven at an even lower
power than the post shot for a longer period of time; perhaps
due to underestimation of the CBET effects by the high fidelity
simulations.

It is interesting to compare the predictions for each fidelity
of DJINN model for the three optimal designs, given in
Table VI. The low fidelity model optimal design is expected
to perform well according to simulations, but the experiment-
calibrated model expects it to perform 24% worse than the
experimental optimal. Thus, relying on simulations leads to
incorrect conclusions about how to best maximize implosion
performance.

The maximum ITFX design according to the experiment-
calibrated model is consistent with other analyses of this
database [45]–[47]. The researchers at Omega are training
power law-based models to relate simulation outputs and
experimental measurements; through this process they found
that to optimize yield, they should increase the thickness of
the ice in the capsule; the experimentally-calibrated DJINN
model makes a similar suggestions. They confirm their model
predictions with a series of experiments, each time making
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TABLE VI
PREDICTIONS OF THE LOW FIDELITY (LOW FI.), HIGH FIDELITY (HIGH FI.), AND EXPERIMENT (EXP.) DJINN MODELS AT THE POINT OF OPTIMAL

YIELD(ρR)2 ACCORDING TO EACH OF THE THREE MODELS.

log10(Yield(ρR)2) at: Low Fi. Optimal High Fi. Optimal Exp. Optimal
Low Fi. DJINN 19.764 19.586 19.570
High Fi. DJINN 19.421 19.598 19.273
Exp. DJINN 18.951 19.019 19.070

small extrapolations in shell thickness and updating the models
with the new experimental data before predicting the outcome
of the next experiment. After maximizing the yield, the
researchers performed a set of experiments to independently
optimize the areal density by modifying the picket and foot of
the pulse. This approach is largely physics-guided, and treats
the pulse and capsule independently to optimize yield and areal
density; it does not explicitly account for interactions between
the capsule geometry and the laser pulse. In contrast to the
power law fits to the data, the neural network models can
consider nonlinear interactions between the inputs and outputs,
tuning the pulse and capsule simultaneously to maximize
ITFX. However, the neural networks might be inaccurate far
from the experimental data, thus caution should be taken to
make small extrapolations from the data with this technique
as well.

The fact that two distinct methods for creating data-driven
models suggest similar design choices for optimizing perfor-
mance is encouraging, and illustrates the powerful role transfer
learning can play in designing ICF experiments. Although a
purely machine learning motivated ICF experiment has not
yet been carried out, machine learning has been used to
optimize performance of other large scale experiments with
promising results [48], [49]. In future work, we intend to
apply machine learning to guide the optimization of ICF
experiments, however we feel it is still necessary to analyze
such designs to ensure they do not encounter sources of
performance degradation or physical limitations not included
in the training data. For example, facility limits or safety
requirements might be considered, or one might want to limit
how far from previous experiments the model can extrapolate.

V. CONCLUSIONS

Transfer learning with deep jointly-informed neural net-
works has enabled the creation of surrogate models which
emulate more expensive simulations and experiments, with-
out requiring massive quantities of expensive data. Transfer
learning uses low fidelity simulations to learn the approximate
responses surfaces, then uses a sparse collection of expensive
high fidelity simulations or experimental data to modify a lim-
ited number of weights in the network. The resulting networks
accurately emulate the expensive data, without requiring a
large database of high fidelity simulations or experiments to
train the neural network from scratch. Hierarchical transfer
learning, the process of calibrating from low to high fidelity
simulations to experiments (or between levels of fidelity of
simulations) enables the creation of accurate emulators for the

highest fidelity simulations or experiments, with lower com-
putational cost than creating a neural network on the highest
fidelity data alone. Transfer learning with DJINN enables the
creation of neural network models that are predictive of direct
drive ICF experiments at the Omega laser facility, which are
used to design optimal implosions for future experiments.
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