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• Many people have influenced my research career
• Graduate School and Beyond

• James Holloway (my PhD. advisor)
• Tom Brunner (research, coding, and physics guide)

• Postdoc at LANL
• Todd Urbatsch (implicit Monte Carlo)
• Rob Lowrie (radiation hydrodynamics)
• Jeff Densmore (implicit Monte Carlo and optimism)

• My Texas A&M Colleagues
• Marvin Adams
• Jim Morel
• Jean Ragusa

• I owe any research success I may have had to my interactions with these people, and
many others that I could list.

First, a few words of thanks.
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• In this talk I want to look at some potential avenues for innovation in mathematics and
computation for nuclear applications.

1 Nonlinear problems allow us to get more information from less data.
2 The data produced from our simulations can be used to improve our computation.

• I cannot claim these ideas are 100% novel. I follow the applied mathematics,
computational physics, and statistics literature outside the application areas I am
interested in to draw inspiration.

I have always tried to approach research by looking at

problems in a unique way.
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• In this talk I want to look beyond the novel ways of solving the transport equation and
think about the state of computation.

• Computers are getting faster and transport calculations are becoming standard in a
variety of applications.

• Low-order models subject to calibration are not essential to analyses.
• As a result numerical and transport model errors are becoming less important than

errors arising from incorrectly specified data.
• Cross-sections, problem specifications, etc. may cause a larger uncertainty than

numerical error.
• Measuring these errors has been the focus in uncertainty quantification (UQ) for some

time.
• An issue that looms that large is the number of uncertain parameters is generally much

larger than we can deal with.

Math & Comp is more than discretizations and numerical

results.
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• Many of the ideas I will talk about, as applied to
UQ, can be found in my book.

• Specifically, how to use compressed sensing
ideas such as regularized regression to reduce the
dimensionality of a UQ problem is discussed.

• Additionally, applying compressed sensing to
polynomial chaos expansions is developed there
as well.

[Shameless plug]
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• In scientific computing we are used to taking a known operator and making
approximations to it.

• It is possible to use the action of an operator and use just the action of the operator to
generate approximations to it.

• This is the basis for many Krylov methods.
• We can use the action of radiation transport operators to

• Estimate time eigenvalues present in a subcritical system, and
• Compute the slowly converging modes in source iteration to accelerate convergence

without the need for diffusion-based preconditioning 1

• Reduce the amount of memory needed to perform a simulation 2

1See DMD talk Wednesday morning.
2See Low-Rank Talk Tuesday Morning in Transport Theory II.

We can use data to approximate operators and improve

calculations.
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• We consider a problem with vacuum boundaries, 1000 cells, unit domain length, with c = 0.9999 and

σt =

{
2p cell number odd
2−p cell number even

.

• Below we see convergence for p = 5 (dashed) and p = 8 (solid), a factor of about 1000 and 6.5 × 104

between thick and thin cells, respectively.
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DMD can be accelerate source iteration: Wed. Morning

Talk with Terry Haut.
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• On the linesource problem in 2-D Cartesian geometry, low-rank methods can use higher angular fidelity
and obtain lower errors using less memory.

Low-Rank Discretizations of the Transport Equation use

much less memory. (Tuesday Morning w/Zhuogang Peng)
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• Consider a sequence of vectors {y0,y1, . . . ,yK} where yk ∈ RN .
• The vectors are related by a potentially unknown linear operator of size N × N, A, as

yk+1 = Ayk .

• If we construct the N × K data matrices Y+ and Y−,

Y+ =
©­«
| | |

y1 y2 . . . yK
| | |

ª®¬ Y− =
©­«
| | |

y0 y1 . . . yK−1
| | |

ª®¬
we can write

Y+ = AY−.

• At this point we only need to know the data vectors yk, they could come from a calculation,
measurement, etc.

• As K → ∞ we could hope to infer properties about A.

We begin with a sequence of vectors related by an

operator.
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• We can rearrange the relationship between Y+ and Y− using the SVD:

Y+ = AUΣVT → UTAU = UTY+VΣ−1.

• Define Ã = UTAU = UTY+VΣ−1. This is a rank K approximation to A.
• Using the approximate operator Ã, we can now find out information about A.
• The eigenvalues/vectors of Ã: Ãw = λw, are used to define the dynamic modes of A:

φ =
1
λ

UTY+VΣ−1w.

• The dynamic mode decomposition (DMD) of the data matrix Y+ is then the
decomposition of into vectors φ. The mode with the largest norm of λ is said to be the
dominant mode.

DMD gives a low rank approximation to the operator.
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• Consider the sequence
zk+1 = azk + nk,

where a = 0.5, and nk ∼ N(0,102).
• Using K = 500, we estimate a = 0.506552 from the data below.
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Example of operator approximation for N = 1
demonstrates the efficacy.
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• If we consider a sequence of vectors that are solutions to the system of differential equations,

∂y
∂t
= Ay(t),

and are separated by a time, ∆t, the relationship between vectors is

yn+1 = eA∆tyn.

• As before we can define Y− and Y+, compute the SVD of Y− = USV∗, and approximate the
matrix exponential:

UTeA∆tU = UTY+VΣ−1.

• One can show the following:
• The eigenvalues of UTeA∆tU are also eigenvalues of eA∆t.
• If α is an eigenvalue of A, then eα∆t is an eigenvalue of eA∆t.
• The eigenvectors of A are eigenvectors of eA∆t.

DMD can be used to estimate eigenvalues of the matrix

exponential.
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• In neutron transport for time-dependent problems α eigenvalues (also called time
eigenvalues) are important quantities to understand system dynamics and safety.

• These eigenvalues characterize the system evolution in terms of functions of the form
Ceαt.

• The more well-known k-eigenvalue gives information about the long-term behavior of
the system, but is less useful for diagnosing many experiments.

• Additionally, most alpha eigenvalue solvers have issues with subcritical problems due
to “negative absorption”.

• For subcritical systems it has been shown that the rightmost eigenvalue in the complex
plane is not necessarily meaningful.

• There can be an eigenvalue with negative real part that is arbitrarily close to 0.
• These eigenvalues correspond to the time scale of slow moving neutrons crossing the

system.

Current methods of estimating time-eigenvalues have

issues for subcritical systems.
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• If we compute K + 1 time steps of size ∆t using a transport solver, we will have the relation

©­«
| | |
ψK ψK−1 . . . ψ1
| | |

ª®¬ = eA∆t ©­«
| | |

ψK−1 ψK−2 . . . ψ0
| | |

ª®¬
or Y+ = eA∆tY− and we can take the SVD of Y− as before.

• Therefore, if we estimate the eigenvalues λ of the K × K matrix UTeA∆tU, we can compute the
alpha eigenvalues of the system as

α =
log λ
∆t

.

• We do not need to a special eigenvalue solver to do this.

The time evolution of the angular flux can be used to

estimate alpha eigenvalues.
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• We consider a slab-geometry problem where a plastic moderator is sandwiched between two slabs of
plutonium with a small outer reflector.

• This system will have α eigenvalues associated with the time scale of slow neutrons crossing the
moderator.

• The fundamental mode from a k-eigenvalue problem has many thermal neutrons in the middle of the
problem.

• We consider the situation where DT neutrons enter the slab from both sides at time 0.
• Thermal: E < 5 eV, Fast: E > 0.5MeV
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A heterogeneous, subcritical system will test this method

on a nontrivial problem.
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Left: Neutron density (ϕ/v) as a function of space and time.
Right: Neutron spectrum at the center of the HDPE and the center of the fuel.

In 1 µs the spectrum does not approximate the

fundamental k-eigenvalue mode.
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Using the DMD method at different times finds the

predominant eigenmodes present in the system.
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Using the DMD method at different times finds the

predominant eigenmodes present in the system.

19/37 Ryan McClarren Monday Plenary



• We consider a two region sphere, where the mass
is preserved but the outer radius is varied.

• The rightmost α eigenvalue changes character
greatly when the criticality state is changed (left).

• The modes found by DMD in the first 0.1 µs of a
simulation with initial condition of fast neutrons
hitting the sphere are not as sensitive (right).
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DMD modes.
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• Because the method finds the eigenmodes that are present in the system it will not be
susceptible to finding unimportant, slowly decaying modes.

• One can tailor initial conditions to look for certain eigenvalues.
• The DMD approximation can be used for nonlinear operators.
• If the system changed over time we could approximate effective eigenvalues of the

changing transport operator:
• Thermal expansion
• Depletion/Breeding

• The theoretical interpretation of these eigenvalues is not obvious.

Extensions to the method could be made for more dynamic

systems.
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• The idea of using nonlinear methods for linear problems has a long history.
• This can be traced back to at least Godunov’s theorem that says that we need a nonlinear

scheme to get a monotone, high order scheme for partial differential equations.
• Many problems can be cast in the form y = Ax, where A is a square matrix.
• However, it is possible to transform this to a under-determined system that has the same

solution
ỹ = Ãx,

with the solution made unique by enforcing a nonlinear constraint or penalty on x.
• This is the idea behind compressed sensing: if x is a sparse in some basis, we can randomly

measure it and reconstruct the signal using a nonlinear optimization problem.

Treating a linear problem using nonlinear methods can lead

to improvement.
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• In sensitivity analysis we are interested in finding the sensitivity of a quantity of interest (QoI) to a set of
parameters: ∂y

∂xi
• Using a Taylor series we can write the QoI with x̄ as the nominal value of the parameters as

y(x) = y(x̄) +
p∑

i=1

∂y
∂xi

(x̄i − xi).

• We could compute the sensitivities, using finite differences (requiring p + 1 function evaluations), or we
could compute M < p random function evaluations y(x) and solve the minimization problem

min
p∑

i=1

���� ∂y
∂xi

���� s.t. ∥Aδx − y∥ < ϵ,

with δx a vector of the sensitivities, A the M × p matrix containing the values of (x̄i − xi), and y the
values of y for the M evaluations.

• This is equivalent to casting the problem of finding the sensitivities as a regression problem and solving
it with regularized regression.

• We could extend this to give second-order sensitivities or the coeffs. of a polynomial chaos expansion.

UQ/SA can be treated using this approach by using an

optimization framework.
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This example shows a fourth-degree polynomial expansion for a problem with two uncertain parameters.
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We can estimate a polynomial chaos expansion using many

fewer function evaluations.
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• This is the idea behind the single-pixel camera developed at Rice University: sample
the image projected onto random linear combinations of the pixels in the image using
an array of tiny mirrors called a DMD. Each linear combination only requires the
measurement of a single scalar value, i.e., a single CCD.

from http://dsp.rice.edu/cscamera

The single pixel camera uses these ideas.

25/37 Ryan McClarren Monday Plenary

http://dsp.rice.edu/cscamera


• In the case of the single pixel camera, each row of the measurement matrix A is a random
string of zeros and ones of length N.

• The vector b is the sum of the pixels that are reflected to the detector by the mirror.
• In this case we find the solution to the system Ax = b through the optimization problem

minimize TV(x) subject to∥Ax − b∥2 ≤ ϵ,

where the total variation (TV) of an image is the sum of the squares of the forward difference
in the horizontal and vertical directions for each pixel (i.e., how much does the image change
from pixel to pixel).

• This problem will have a unique solution, that ensures the reconstruction error (the second
term) is small and the total variation in the image.

• Other optimization problems are possible, but for images, minimizing the TV norm is
reasonable.

This application uses nonlinear to find the image using

random linear combinations of the pixels.
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4

(a) (b) (c)

Fig. 2. Single-pixel photo album. (a) 256 × 256 conventional image of a black-and-white R. (b) Single-
pixel camera reconstructed image fromM = 1300 random measurements (50× sub-Nyquist). (c) 256× 256
pixel color reconstruction of a printout of the Mandrill test image imaged in a low-light setting using a single
photomultiplier tube sensor, RGB color filters, andM = 6500 random measurements.

that the design inherits from the CS theory include its universality, robustness, and progressivity.

The single-pixel design falls into the class of multiplex cameras [8]. The baseline standard

for multiplexing is classical raster scanning, where the test functions {φm} are a sequence of delta

functions δ[n − m] that turn on each mirror in turn. As we will see below, there are substantial

advantages to operating in a CS rather than raster scan mode, including fewer total measurements

(M for CS rather than N for raster scan) and significantly reduced dark noise.

Image acquisition examples

Figure 2 (a) and (b) illustrates a target object (a black-and-white printout of an “R”) x and

reconstructed image x̂ taken by the single-pixel camera prototype in Fig. 1 using N = 256×256

and M = N/50 [5]. Fig. 2(c) illustrates an N = 256 × 256 color single-pixel photograph of

a printout of the Mandrill test image taken under low-light conditions using RGB color filters

and a photomultiplier tube with M = N/10. In both cases, the images were reconstructed using

Total Variation minimization, which is closely related to wavelet coefficient ℓ1 minimization [2].

Structured illumination configuration

In a reciprocal configuration to that in Fig. 1, we can illuminate the scene using a projector

displaying a sequence of random patterns {φm} and collect the reflected light using a single

lens and photodetector. Such a “structured illumination” setup has advantages in applications

where we can control the light source. In particular, there are intriguing possible combinations

of single-pixel imaging with techniques such as 3D imaging and dual photography [9].

4

(a) (b) (c)

Fig. 2. Single-pixel photo album. (a) 256 × 256 conventional image of a black-and-white R. (b) Single-
pixel camera reconstructed image fromM = 1300 random measurements (50× sub-Nyquist). (c) 256× 256
pixel color reconstruction of a printout of the Mandrill test image imaged in a low-light setting using a single
photomultiplier tube sensor, RGB color filters, andM = 6500 random measurements.

that the design inherits from the CS theory include its universality, robustness, and progressivity.

The single-pixel design falls into the class of multiplex cameras [8]. The baseline standard

for multiplexing is classical raster scanning, where the test functions {φm} are a sequence of delta

functions δ[n − m] that turn on each mirror in turn. As we will see below, there are substantial

advantages to operating in a CS rather than raster scan mode, including fewer total measurements

(M for CS rather than N for raster scan) and significantly reduced dark noise.

Image acquisition examples

Figure 2 (a) and (b) illustrates a target object (a black-and-white printout of an “R”) x and

reconstructed image x̂ taken by the single-pixel camera prototype in Fig. 1 using N = 256×256

and M = N/50 [5]. Fig. 2(c) illustrates an N = 256 × 256 color single-pixel photograph of

a printout of the Mandrill test image taken under low-light conditions using RGB color filters

and a photomultiplier tube with M = N/10. In both cases, the images were reconstructed using

Total Variation minimization, which is closely related to wavelet coefficient ℓ1 minimization [2].

Structured illumination configuration

In a reciprocal configuration to that in Fig. 1, we can illuminate the scene using a projector

displaying a sequence of random patterns {φm} and collect the reflected light using a single

lens and photodetector. Such a “structured illumination” setup has advantages in applications

where we can control the light source. In particular, there are intriguing possible combinations

of single-pixel imaging with techniques such as 3D imaging and dual photography [9].

Left: Original 256 x 256 image, Right: Reconstruction from 1500 single-pixel samples (1/50)

Single Pixel Camera Experimental Results

27/37 Ryan McClarren Monday Plenary



• The actual matrix A does not need to be stored (just the random number seed used to
generate it).

• The signal is encrypted because one needs to know b and A to determine the image.
• Trades computation for memory: the b vector is much smaller that the full image, but

we must solve an optimization problem to recover the image.

There is a reduction in the size of the signal.
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• Consider a single, large neutron detector. We can
fit this detector with a collimator and randomly
block channels in the collimator to mimic the
single-pixel camera.

• We consider an active interrogation problem of a
cargo container with 14.1 MeV neutrons.

• We have a collimator that is a 3 m square and has
64 × 64 = 4,096 openings.

Introduction
Theory/Design

Results
Conclusion and future work

Case 3: Sample ULD contents

The regular view
distinguishes some materials
but has no contrast in others
Containers with low density
gaps show good contrast
The log view is able to pick up
features not seen otherwise

Shows the plutonium sphere
Can barely make out TNT

The MCNP detector results of the ULD test problem, which are used
for sampling.

The MCNP detector results of the ULD test problem in logarithmic
view, which are used for sampling.

Yuriy Ayzman Single Pixel Neutron Camera

Problem from Eberhardt, J., S. Rainey, R. Stevens, B. Sowerby, J. Tickner, Fast neutron radiography scanner for the detection of contraband in air cargo containers,

Applied Radiation and Isotopes 63 (2) (2005) 179–188.

This can be applied to radiation detection.
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The logarithmic view of the reconstructions for the active interrogation problem using (a) 1%, (b)
5%, (c) 10%, (d) 20%, (e) 30%, (f) 40%, (g) 50%, and (h) 70% of the pixel count

Simulation results
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• One of the benefits of using the Monte Carlo method for particle transport simulations
is that it uses simulated particles as analogs of the real particles in a system.

• As such we can create an analog of the single pixel camera inside of a Monte Carlo
simulation to

• Reduce the memory required to tally quantities, and
• Reduce statistical noise in the simulation.

• The idea is to store random linear combinations of quantities estimated via Monte
Carlo rather than a single value for each spatial location.

• These ideas could also be applied to MOC.

Disjoint Monte Carlo Tallies
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• If we want the solution on the grid on
the right, we need a tally for each voxel.

• Instead, we could define a series of
disjoint tallies that take linear
combinations of the tallies for each
voxel.

• If we need fewer disjoint tallies than the
number of voxels, we can reduce the
memory footprint for the calculation.

Purpose Theory Problem #1 Results Problem #2 Results Conclusions

ICTT 2015 - 24th International Conference on Transport Theory 7

Random Disjoint Tallies Example

� Consider a 4x4 mesh tally of particle flux
Demonstration of Disjoint Monte Carlo Tallies
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• If we want the solution on the grid on
the right, we need a tally for each voxel.

• Instead, we could define a series of
disjoint tallies that take linear
combinations of the tallies for each
voxel.

• If we need fewer disjoint tallies than the
number of voxels, we can reduce the
memory footprint for the calculation.

Purpose Theory Problem #1 Results Problem #2 Results Conclusions

ICTT 2015 - 24th International Conference on Transport Theory 8

Step 1: Label Unit Cells
� Each unit cell labeled 1 is a subset of disjoint cell #1 

• Any particles traversing disjoint cell #1 contribute to disjoint tally #1

� Same applies to disjoint tallies #2 and #3

Demonstration of Disjoint Monte Carlo Tallies
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Purpose Theory Problem #1 Results Problem #2 Results Conclusions

ICTT 2015 - 24th International Conference on Transport Theory 9

Step 2: Simulate Particles and Store 𝒃

Tally 2

Tally 1

Tally 3

�  𝑥 is size 16

� 𝑏 is size 3

�  𝐴 is size 16x3

 𝐴  𝑥 − 𝑏 2 ≤ 𝜖

Demonstration of Disjoint Monte Carlo Tallies
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• As a test we look at a 2-D grid of the
fast scalar flux in the Texas A&M
TRIGA reactor.

• The grid has 1024 × 1024 voxels.
• Criticality calculation with 2,500 fission

cycles and 200,000 neutrons per cycle.

Reactor Calculation with Disjoint Tallies
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Original 2D mesh 
tally of flux in NSCR 
(left) and statistical 
error (right)

Compressed to 10% 
of computer memory 
(left) and statistical 
error (right)

Reactor Calculation with Disjoint Tallies using 100x fewer

particles shows reduction in memory/noise.

36/37 Ryan McClarren Monday Plenary



• In computation (especially transport) we often think that because we have the correct
(often linear) model we should focus on solving that model better.

• However, using data to approximate that operator, or making things nonlinear can lead
to improvement.

• Approximate operators can tell us about what is happening in a given system.
• Nonlinear reconstruction of tallies reduces memory and provides view-time computation.
• Thinking of UQ and SA as a nonlinear problem may require fewer code runs.

• Nonlinear problems with less memory can be more efficient for advanced
architectures.

Thinking about problems differently can lead to

breakthroughs.
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