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• The combination of simulation and experimental data to understand or
constrain nuclear data is an important task.

• Data assimilation or calibration exercises run the risk of getting the right
answer for the wrong reasons.

• For example, the calibrated data could produce simulations that match
eigenvalues for particular experiments but fail on other integral
experiments.

• The more experimental data we use the better we can calibrate the data.

Data uncertainties are becoming more important.
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• In this work, we tackle the problem of calibrating the mean number of
fission neutrons per induced fission in 239Pu, as a function of incident
neutron energy.

• Similar work has been performed recently with a focus on calibration of
energy-independent parameters of fission spectra based on MCNP
simulations of sub-critical experiments (Arthur et al. 2019).

• This work utilized a genetic algorithm to optimize the width of induced and
spontaneous fission number distributions, as well as the mean number of
neutrons produced per spontaneous fission for 240Pu.

• The optimization space of each parameter was limited by the variance of
each parameter, and new values of multiplicity moments were predicted
using finite difference estimated sensitivities.

• The simulations were able to demonstrate positive matches to moments of
multiplicity distributions, with the greatest effect from the 240Pu fission rate.

We investigate the problem of the for 239Pu.
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• Previous work in (Siefman et al. 2018) measured the effects of perturbing
data from ENDF/B-VII.1 and how well two stochastic methods, Monte
Carlo Bayesian Analysis (MOCABA) and Bayesian Monte Carlo (BMC),
compared to the commonly used Generalized Linear Least Squares (GLLS).

• It was demonstrated that both these stochastic methods performed as well
as GLLS; however, they both needed more data to reduce the uncertainty,
with MOCABA needing less data than BMC.

• The novelty of this paper is that it includes a penalty in the calibration
that is not present in GLLS.

• In addition, while (Siefman et al. 2018) focused on critical systems, the
experimental data used for this paper are from both critical and subcritical
systems.

Our work is a different approach than existing methods.

5/24 Whewell, McClarren, Bolding DMD Acceleration



• The work described herein adds complementary results to prior work by
analyzing the energy-dependent effects of for subcritical experiments and
criticality benchmarks, where the space is large enough that computing
sensitivities via finite-difference would be computationally prohibitive.

• This work attempts to utilize a set of pre-existing MCNP (C.J. Werner
(editor) 2017) simulations of experiments to build a statistical model that
can be used for nuclear data evaluation.

• These simulations were generated previously using random samples of the
energy-dependent space (Bolding 2013).

• Computationally, using this pre-existing data to build a statistical model
introduces minimal cost, relative to the original simulations, whereas the
use of global optimization methods directly would require many additional,
expensive MCNP simulations.

• Ideally, this approach will lead to a proposed adjustment to the nuclear
data, but it should at least provide insight for data evaluators on where in
energy for 239Pu has been artificially altered.

The potential calibration space that we investigate is large.
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• Experimentally generated multiplicity distributions are important because
they indirectly provide passive information about neutron sources and
multiplication in a subcritical system of interest (Reilly et al. 1991).

• High-quality experimental measurements of a sphere of plutonium referred
to as the BeRP ball were used to generate neutron multiplicity
distributions.

• Multiplicity distributions were generated for five different moderator
thicknesses. Previous work has investigated the cause of a known overbias
between multiplicity distributions generated by MCNP simulations and the
experimental data Miller, Mattingly, et al. n.d.

• A simulated multiplicity distribution is generated by post-processing
time-dependent tallies of analog neutron histories reaching the detector,
using an assumed detector dead time approximation.

• The cause of the overbias is believed to be inaccuracies in the nuclear data
because equivalent simulations of 252Cf experiments did not demonstrate
this overbias (Miller, Mattingly, et al. n.d.). Additionally, increased
moderator thickness lead to higher differences, indicating the potential
need for energy-dependent corrections.

Subcritical measurements are a key piece of our analysis.
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• In this work, we will utilize pre-existing MCNP simulated data of these
simulations from Bolding 2013, consisting of multiplicity distributions and
criticality benchmarks.

• The MCNP simulations were performed using energy-dependent
perturbations of for 239Pu to demonstrate the need to include simulations
of subcritical experiments in the evaluation of nuclear data.

• The perturbations were generated by producing random samples of the
covariance matrix provided by ENDF/B-VII.1 for of 239Pu. The covariance
contains average uncertainty values across 50 energy groups, with the
slowest energy group containing no data.

• Of interest to this work, is that the cross-correlation terms between groups
are negligible (Bolding 2013), which does not preserve the smoothness of
sampled data between energy groups.

We use a suite of MCNP simulations with perturbed for 239Pu.
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• Samples were generated assuming a multi-variate Gaussian distribution for
the uncertainty of in each group.

• We call the vector of the adjustments ∆.
• Five hundred (500) realizations of the nuclear data were generated, and

then MCNP simulations were performed to calculate the simulated
multiplicity distributions.

• The Jezebel criticality benchmark was also simulated for each realization
of the nuclear data to demonstrate the effect on keff .

• This benchmark was chosen because it is a bare critical sphere of Pu and
it is known that for 239Pu was artificially increased in the epithermal range
to match this benchmark.

The data set consists of BeRP ball multiplicities and Jezebel calculations.
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• Neutron Multiplicity Distributions
• Provide multiplication

information
• Passive assay of sub-critical,

fissionable systems
• Multiplicity Counting

• Array of large detectors
• Time-dependent detection

information

Figure: Multiplicity distributions [PANDA Manual, 1991]

Neutron multiplicity distribution give information about neutron
coincidence at a detector.
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• Normalize to form a PDF
• Typically use factorial moments

Constructing a Multiplicity Distribution (Ideal Case) involves counting
neutrons that are detected in a time window.
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• Performed at LANL for verifying
subcritical simulations

• Experimental Parameters
• 94% 239Pu sphere
• NPOD multiplicity counter
• 5 experiments

• HDPE shells: None, 0.5 cm, 1.0
cm, 1.5 cm, 3.0 cm

• Recorded multiplicity distributions
are well verified

• Repeated with 252Cf

Multiplicity experiments record how the distribution changed with
differing moderators.
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HDPE Shells
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• The sets of resulting data were compared using a χ2 statistic as a metric of the reduction in
bias in multiplicity distributions, without sacrificing the accuracy of keff in criticality
experiments.

• The χ2 statistic for each ∆, is defined as

χ
2(∆) =

(ksim − 1)2

σ2(ksim) + σ2(kexp)
+

∑
exp

1
Nb,exp

∑
i

(Si − Ei,exp)
2

σ
2(Si ) + σ

2(Ei )
, (1)

where
• the sum over i represents each bin in the multiplicity distribution (i.e., a multiplet),
• the sum over experiments represents each of the 5 moderator thicknesses,
• Si and Ei are the MCNP simulated and experimental value of multiplicity for bin i ,

respectively,
• the Nb values are the number of bins that have a non-zero value;
• the uncertainties in the denominator include counting statistics of the simulated

multiplicity distribution via MCNP, as well as the experimentally estimated
uncertainties.

• Equation (1) also includes a contribution from the computed value of keff relative to the
Jezebel benchmark.

• A lower value of χ2 indicates a better match for a particular ∆.

• Note that because all simulations are weighted equally, the terms in the statistic are weighted
such that improved accuracy in multiplicity distributions produces a greater effect than
improved accuracy in keff .

A χ2 metric is used to compare simulation and experiment.
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• In our study, we use Gaussian process regression (GPR) (McClarren 2018)
to build a statistical model of χ2(∆ν̄) from the 500 sets of MCNP
simulations.

• Using this model we then seek to minimize the discrepancies between the
simulations and the experimental measurements.

• However, we also desire to penalize the calibration problem to reduce the
chance of large deviations from the evaluated data.

• Philosophically, we take this approach because we do not want all of the
discrepancy between simulation and experiment to be removed via
calibrating ν̄.

We build a Gaussian Process model to estimate χ2(∆ν).
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• Our calibration problem is ill-posed because there could be many
adjustments to ∆ν̄ that could yield a small value for χ2.

• Additionally, because of the negligible cross-correlation terms in the
covariance matrix the randomly sampled date has many non-physical,
opposite adjustments between adjacent energy groups in smooth regions of
.

• Therefore, we seek to add constraints. We borrow from compressed
sensing (Candes, Romberg, and Tao 2005; Vaquer, McClarren, and
Ayzman 2016) by adding a regularization term to the minimization
problem to avoid oscillatory corrections such as adding a large positive
addition in one group and a large negative addition in the next unless such
an adjustment gives a large improvement in χ2.

• To quantify the oscillatory nature of an adjustment we use the total
variation (TV) norm:

TV(x) =
N−1∑
i=1

|xi − xi+1|, (2)

where N is the length of the vector.

Our calibration metric contains a total variation penalty term.
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• Given the considerations of desiring small adjustments and non-oscillatory
adjustments, we look to minimize the metric

L =
χ2(∆ν̄)

100 + TV(∆ν̄) + ∥∆ν̄∥2, (3)

over all possible perturbations ∆ν̄ to the data.
• The metric weights χ2 to give it the same order of magnitude as the total

variation and the magnitude of the perturbation.
• For the MCNP simulations the value of χ2(∆ν̄) was about 200 or greater,

and our weighting makes it several times as important as the other two
components of the metric.

• To minimize L we use a Markov chain Monte Carlo procedure where new
values of ∆ν where sampled from independent normal distributions
centered at the current chain state.

• Sampled values of ∆ we accepted as the new chain state if they decreased
the value of L or if they increase the value of L by a percentage smaller than
a random number in 0 to 1.

•

We calibrate to a minimize χ2, total variation, and the divergence from
the original data.
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The best values of the calibrated data show a lowering of the multiplicity
in the resonance range.
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The calibrated data shifts the peak of the multiplicity distribution of the
3 cm reflector toward the experiment.
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• To quantify the improvement we computed
the difference between the multiplicities in
a simulation and the experimentally
measured multiplicities and take the 2
norm, ∥S − E∥2, where S is the vector of
simulated responses at each multiplet, and
E is the experimentally measured values.

• We also compute the first 3 factorial
moments for the simulations and the
measured data; a factorial moment is
computed as

ν1 =
max∑
ℓ=1

ℓSℓ,

ν2 =
max∑
ℓ=2

ℓ(ℓ − 1)Sℓ,

ν3 =
max∑
ℓ=3

ℓ(ℓ − 1)(ℓ − 2)Sℓ.

• Though not shown, we have found that
higher moments demonstrate a larger
improvement as the moment order is
increased.
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The error in the multiplicities is reduced by a factor between 10 and 15%.
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• The value for keff using the calibrated data on Jezebel were keff= 0.9984
±0.00032.

• This compares with the nominal data where = 0.99995 ± 0.00010.
• The nominal data is within 1 standard deviation of the benchmark value of

1 ± 0.0020, whereas the calibrated data is 5 standard deviations from 1
but still within the one standard deviation uncertainty in the experiment.

• This is an undesirable result, despite the fact that the multiplicity
distributions were improved.

• We believe that this is the result of the large uncertainties in the keff
simulations used in the calibration procedure. These values for keff were
computed only to an uncertainty of ±0.001, and, as a result, 53% of the
simulations in the data set where within one standard deviation of 1. This
large uncertainty could cause the calibration procedure to discount how
perturbations in to (E) will affect keff .

The performance on Jezebel does degrade.
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• We have introduced a new approach to adjusting nuclear data using the
total-variation norm to avoid oscillatory adjustments.

• We used an MCMC sampling procedure and a Gaussian process regression
emulator to perform the calibration.

• The MCMC sampler was used to minimize the a loss function that was a
combination of the χ2 value for a perturbation, the total variation of the
perturbation, and the magnitude of the perturbation.

• We believe that this approach can produce nuclear data adjustments that
avoid unnecessary oscillations in the adjustment.

• For the adjustment for (E) for 239Pu we find that our calibration improved
agreement with experimental multiplicity measurements. The covariances
for the simulations are likely under-predicted, as the calibration based on
samples of the covariance data were not able to strongly correct the
distributions while preserving smoothness.

• We should generate more samples to test this hypothesis in future work.
• Future work should investigate this type of adjustment procedure on other

nuclear data types. We believe the physical ideas encoded in the TV norm
make it potentially useful for a variety of problems.

The use of total variation in a calibration procedure has benefits.
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