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• In scientific computing we are used to taking a known operator and
making approximations to it.

• It is possible to use the action of an operator and use just the action of the
operator to generate approximations to it.

• This is the basis for many Krylov methods.
• In this talk I will detail how we can use the action of radiation transport

operators to compute the slowly converging modes in source iteration to
accelerate convergence without the need for diffusion-based
preconditioning.

• The basis for this work is the dynamic mode decomposition (DMD). This
method can

• Estimate time eigenvalues present in a subcritical system (Ryan G. McClarren (2019)

“Calculating Time Eigenvalues of the Neutron Transport Equation with Dynamic Mode Decomposition”, Nuclear Science

and Engineering, 193:8, 854-867), and
• Be used to produce an inexpensive reduced-order model (Zachary K. Hardy, Jim E.

Morel Cory Ahrens (2019) “Dynamic Mode Decomposition for Subcritical Metal Systems”, Nuclear Science and

Engineering)

We can use data to approximate operators and improve calculations.

4/24 McClarren & Haut DMD Acceleration



• Consider a sequence of vectors {y0, y1, . . . , yK} where yk ∈ RN .
• The vectors are related by a potentially unknown linear operator of size

N × N, A, as
yk+1 = Ayk .

• If we construct the N × K data matrices Y+ and Y−,

Y+ =

 | | |
y1 y2 . . . yK
| | |

 Y− =

 | | |
y0 y1 . . . yK−1
| | |


we can write

Y+ = AY−.

• At this point we only need to know the data vectors yk , they could come
from a calculation, measurement, etc.

• As K → ∞ we could hope to infer properties about A.

We begin with a sequence of vectors related by an operator.
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• We take the thin singular value decomposition (SVD) of Y− to write

Y− = UΣV T,

where U is a N × K orthogonal matrix, Σ is a diagonal K × K matrix with
non-negative entries on the diagonal, and V is a K × K orthogonal matrix.

• The SVD requires O(NK 2) operations to compute.
• Later, we will want K ≪ N, if, for example, N is the number of unknowns

in a transport calculation.
• Also, if the column rank of Y− < K , then there is a further reduction in

the SVD size.
• The matrix U has columns that forms an orthonormal basis for the row

space of Y− ⊂ RN .
• Using the SVD we get

Y+ = AUΣV T.

• If there are only r < K non-zero singular values in Σ, we use the compact
SVD where U is N × r , Σ is r × r , and V is K × K .

The SVD gives a representation of the data matrices.
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• We can rearrange the relationship between Y+ and Y− to be

Y+ = AUΣV T → UTAU = UTY+VΣ−1.

• Define Ã = UTAU = UTY+VΣ−1. This is a rank K approximation to A.
• Using the approximate operator Ã, we can now find out information about

A.
• The eigenvalues/vectors of Ã,

Ãw = λw ,

are used to define the dynamic modes of A:

φ =
1
λ

UTY+VΣ−1w .

• The dynamic mode decomposition (DMD) of the data matrix Y+ is then
the decomposition of into vectors φ. The mode with the largest norm of λ
is said to be the dominant mode.

DMD gives a low rank approximation to the operator.
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• Consider the sequence
zk+1 = azk + nk ,

where a = 0.5, and nk ∼ N (0, 102).
• Using K = 500, we estimate a = 0.506552 from the data below.
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Example of operator approximation demonstrates the efficacy.
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Left: Data generated by moving a circle in a periodic motion with added noise.
The data has two periods of motion.

Right: Reconstruction generated by approximating Ã using one period of frames
and starting from frame 1.

Evolution without an operator is possible: DMD infers the operator from
the data.
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Dominant DMD mode: Uφ1

Third DMD mode: Uφ3

Second DMD mode: Uφ2

Fourth DMD mode: Uφ4

The DMD modes of the inferred operator are what we would expect.

10/24 McClarren & Haut DMD Acceleration



• The discrete ordinates method for transport is typically solved using source
iteration (Richardson iteration) and diffusion-based
preconditioning/acceleration.

• Source iterations converge quickly for problems with a small amount of
particle scattering.

• For strongly scattering media, the transport operator has a near nullspace
that can be handled using a diffusion preconditioner.

• However, the question of efficiently preconditioning/accelerating transport
calculation on high-order meshes with discontinuous fine elements is an
open area of research.

• The approximate operator found from DMD can be used to remove this
same near nullspace and improve iterative convergence without the need
for a separate preconditioner or diffusion discretization/solve.

The approximate operator can be used to find slowly converging modes in
an iterative method.
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• The steady, single group transport equation with isotropic scattering can be
written as

Lψ =
c

4π
ϕ+

Q
4π
,

where c is the scattering ratio, Q is a prescribed source, and the streaming and
removal operator is

L = (Ω · ∇+ 1) .
• ψ(x,Ω), Ω ∈ S2,

ϕ(x) =
∫

4π
ψ dΩ = ⟨ψ⟩.

• Source iteration solves this problem using the iteration strategy

ϕℓ =

⟨
L−1

(
c

4π
ϕℓ−1 +

Q
4π

)⟩
,

where ℓ is an iteration index.
• One iteration is often called a “transport sweep".
• A benefit of source iteration is that the angular flux, ψ does not have to be

stored.
• As c → 1, the convergence of source iteration can be arbitrarily slow.

We consider source iteration for a simple transport problem.
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• Rearranging the transport equation we see that source iteration is an
iterative procedure for solving

ϕ−
⟨

L−1 c
4πϕ

⟩
= L−1Q,

or
(I − A)ϕ = b.

• Therefore, the source iteration vectors are

ϕℓ+1 = Aϕℓ + b,

or
ϕℓ+1 − ϕℓ = A(ϕℓ − ϕℓ−1)

• Therefore, we can cast the difference between iterates in a form that is
amenable to the approximation of A using DMD, Y+ = AY−,

Y+ =
[
ϕ2 − ϕ1, ϕ3 − ϕ2, . . . , ϕK − ϕK−1

]
,

Y− =
[
ϕ1 − ϕ0, ϕ2 − ϕ3, . . . , ϕK−1 − ϕK−2

]
.

We can write source iteration as a sequence of vectors related by a linear
operator.
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• As before we define an approximate A as the K × K matrix:

Ã = UTAU = UTY+VΣ−1,

• We can use Ã to construct the operator (I − Ã)−1 and use this to approximate
the solution:

(I − A)(ϕ− ϕK−1) = b − (I − A)ϕK−1

= b − ϕK−1 + (ϕK − b)

= ϕK − ϕK−1.

• The difference ϕ− ϕK−1 is the difference between step K − 1 and the converged
answer. We define a new vector ∆y as the length K vector that satisfies

ϕ− ϕK−1 = U∆y . (1)
• We then substitute and multiply by UT to get

(I − Ã)∆y = UT(ϕK − ϕK−1). (2)

This is a linear system of size K that we can solve to get ∆y and then compute
the update to ϕK−1 as

ϕ ≈ ϕK−1 + U∆y . (3)

Source iteration can be accelerated by taking several iterates and
approximating the solution as ℓ → ∞
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• The algorithm is as follows
1 Perform R source iterations: ϕℓ = Aϕℓ−1 + b.
2 Compute K source iterations to form Y+ and Y−. The last column of Y−

we call ϕK−1.
3 Compute ϕ = ϕK−1 + U∆y as above.

• Each pass of the algorithm requires R + K source iterations.
• The R source iterations are used to correct any errors caused by the

approximation of A using the SVD.
• It is easiest to assess convergence between the source iterations.
• This works regardless of the spatial discretization used.
• Other algorithms are possible:

• Rather than extrapolate to an infinite number of iterations, we can use Ã to
approximate a finite number of source iterations.

• We could use a coarsened vector ϕ̄ in the DMD procedure to reduce the
memory/computational cost.

DMD acceleration requires only source iteration and SVD: no diffusion
solver.
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• We consider a slab with vacuum boundaries and a scattering ratio of
c = 0.99 and 1.0 and 400 spatial zones, S8 angular discretization, and the
diamond difference spatial discretization.

• Solid lines are c = 0.99 results and dashed lines are c = 1.0
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DMD works perfectly on a homogenous slab, the ur-demonstration
problem for acceleration schemes.
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• On the same problem set up, the number of iterations to converge is
shown below.

K/c 0.1 0.5 0.9 0.99 0.999 0.9999 0.99999 0.999999

3 8 15 39 70 70 70 70 70
5 10 11 28 90 90 90 90 90

10 15 15 29 60 140 140 140 140
20 25 25 25 49 74 76 76 76
50 55 55 55 56 57 57 57 57
SI 6 17 89 637 2439 3681 3889 3911

A comparison of the number of iterations as a function of K and c
indicates that the convergence is nearly independent of c.
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• We consider a problem with vacuum boundaries, 1000 cells, unit domain
length, with c = 0.9999 and

σt =

{
2p cell number odd
2−p cell number even

.

• Below we see convergence for p = 5 (dashed) and p = 8 (solid), a factor
of about 1000 and 6.5 × 104 between thick and thin cells, respectively.
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Performance does degrade on an insanely heterogeneous problem.
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• We solve a linear, xy-geometry version of the crooked pipe problem where
all materials have a scattering ratio of 0.988 (to simulate a realistic sized
time step).

• The density ratio between the tick and thin material is 1000.
• Problem solved using fully lumped, bilinear discontinous Galerkin in space

and S8 product quadrature.

A version of the crooked pipe problem is a more realistic test.

19/24 McClarren & Haut DMD Acceleration



• The number of iterations for source iteration and DMD-accelerated
calculations with K = 10 and R = 3.

(Nx × Ny ) DMD SI

25 × 15 53 811
50 × 25 52 873

100 × 60 78 974
150 × 90 91 ∞RML

200 × 120 104 ∞RML

∞RML = functionally infinite on my laptop.
• The increase seems to be the resolution to the 1/2 power (square root of

the number of cells per dimension).

The number of iterations required increases slowly with mesh refinement.
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A recent paper, Roberts, Jeremy A., et al. "Acceleration of the Power Method
with Dynamic Mode Decomposition." arXiv preprint arXiv:1904.09493 (2019),
uses these ideas for power iterations. Here is Fig. 3 from that paper:8 J. ROBERTS, L. XU, R. ELZOHERY, M. ABDO
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Fig. 3: The error in the predicted eigenmode for DMD-PM(n), where n is the number
of power iterations performed. Errors are also included for the power method (PM)
and Arnoldi’s method.

essentially throws away all higher-order modes upon the restart.
Consequently, a slight variation of the iterative, restarted DMD-PM(n) algorithm

was tested. Rather than keeping only the DMD mode corresponding to the largest
eigenvalue, the dominant mode was kept with a small contribution from the next two
modes in order to capture the three modes with the largest eigenvalues. Specifically,
the initial guess between restarts was chosen to be the z0 + ✏(z1 + z2), where ✏ is
a small value (here, 10�4) that guarantees that the next iteration is started with at
least some contribution from the higher-order space. The largest three eigenvalues
and their corresponding modes were recovered from the DMD calculation after the
second, third, and fourth iterations of DMD-PM(30) as approximations for the first
three eigenpairs of the original system. Shown in Figure 4 are the reference modes.
The corresponding, absolute errors in the DMD-PM(n) approximations are shown in
Figure 5. All computed eigenvectors were normalized to unity. Errors in higher-order
mode estimates were found to depend somewhat on the randomized initial guess, but
those shown are representative values.

As can be expected, the errors in the two higher-order modes (and their eigenval-
ues) are much larger than the error for the dominant mode. Moreover, these errors
decrease somewhat with each iteration. The error in the dominant mode after two it-
erations (1.77⇥10�7) is nearly unchanged from the case in which higher modes are not
kept (1.54 ⇥ 10�7); see Figure 3. However, the performance does degrade somewhat
thereafter, with errors after three and four iterations of approximately 5.06 ⇥ 10�9

and 1.65⇥10�10, respectively, compared to 9.90⇥10�11 and 3.00⇥10�12 in Figure 3.

4. Conclusions. The DMD-PM(n) method was found to provide reasonable
(5⇥) speedup compared to unaccelerated power iterations. Although not competitive
with Arnoldi for the test problem studied, there do exist applications for which access
to iterates is only available in a post-processing sense. In reactor analysis, the use of
the power method in Monte Carlo simulations is widespread. Application of DMD-

This can work for power iteration as well.
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• We could use DMD acceleration to compute a low-order transport
acceleration (the so-called TSA method). In this case the we would use
low-order in angle transport sweeps to estimate the slowly converging
modes.

• Additionally, it is possible to estimate Ã using independently generated
vectors. This would enable the Y± matrices to be generated using sweeps
computed in parallel.

• The big win could be from applying this to other iterative components:
• Energy group iterations
• Temperature iterations in radiative transfer.

• The performance of DMD on meshes with cycles is also a possible impact
area.

There are opportunities to this approach beyond the acceleration strategy
outlined above.
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• Using a DMD approach to compute approximate operators gives one the
ability to

• Estimate eigenvalues for the system, and
• Accelerate calculations.

• There is much further research to be done, but progress is exciting.

Data-Driven algorithms are widely applicable in transport problems.
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